A188445
T(n,k) is the number of (n*k) X k binary arrays with nonzero rows in decreasing order and n ones in every column.
Original entry on oeis.org
1, 2, 0, 5, 1, 0, 15, 8, 0, 0, 52, 80, 5, 0, 0, 203, 1088, 205, 1, 0, 0, 877, 19232, 11301, 278, 0, 0, 0, 4140, 424400, 904580, 67198, 205, 0, 0, 0, 21147, 11361786, 101173251, 24537905, 250735, 80, 0, 0, 0, 115975, 361058000, 15207243828, 13744869502
Offset: 1
Array begins:
============================================================================
n\k| 1 2 3 4 5 6 7 8 9
---+------------------------------------------------------------------------
1 | 1 2 5 15 52 203 877 4140 21147
2 | 0 1 8 80 1088 19232 424400 11361786 361058000
3 | 0 0 5 205 11301 904580 101173251 15207243828 2975725761202
4 | 0 0 1 278 67198 24537905 13744869502 11385203921707 ...
5 | 0 0 0 205 250735 425677958 1184910460297 ...
6 | 0 0 0 80 621348 5064948309 ...
7 | 0 0 0 15 1058139 ...
8 | 0 0 0 1 ...
...
Some solutions for 16 X 4:
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 0 0
1 0 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1
1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1
0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0
0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)} \\ Andrew Howroyd, Dec 16 2018
A331039
Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set-systems on a k-set.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 5, 0, 0, 1, 0, 1, 43, 5, 0, 0, 1, 0, 1, 518, 175, 1, 0, 0, 1, 0, 1, 8186, 9426, 272, 0, 0, 0, 1, 0, 1, 163356, 751365, 64453, 205, 0, 0, 0, 1, 0, 1, 3988342, 84012191, 23553340, 248685, 80, 0, 0, 0, 1
Offset: 0
Array begins:
==========================================================
n\k | 0 1 2 3 4 5 6 7
----+-----------------------------------------------------
0 | 1 1 0 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 0 1 5 43 518 8186 163356 ...
3 | 1 0 0 5 175 9426 751365 84012191 ...
4 | 1 0 0 1 272 64453 23553340 13241130441 ...
5 | 1 0 0 0 205 248685 421934358 1176014951129 ...
6 | 1 0 0 0 80 620548 5055634889 69754280936418 ...
7 | 1 0 0 0 15 1057989 43402628681 2972156676325398 ...
...
The A(2,3) = 5 matrices are:
[1 1 1] [1 1 0] [1 1 0] [1 0 1] [1 1 0]
[1 0 0] [1 0 1] [1 0 0] [1 0 0] [1 0 1]
[0 1 0] [0 1 0] [0 1 1] [0 1 1] [0 1 1]
[0 0 1] [0 0 1] [0 0 1] [0 1 0]
The corresponding set-systems are:
{{1,2,3}, {1}, {2}, {3}},
{{1,2}, {1,3}, {2,3}},
{{1,2}, {1,3}, {2}, {3}},
{{1,2}, {1}, {2,3}, {3}},
{{1,3}, {1}, {2,3}, {2}}.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, k<=1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)}
A178165
Number of unordered collections of distinct nonempty subsets of an n-element set where each element appears in at most 2 subsets.
Original entry on oeis.org
1, 2, 8, 59, 652, 9736, 186478, 4421018, 126317785, 4260664251, 166884941780, 7489637988545, 380861594219460, 21739310882945458, 1381634777325000263, 97089956842985393297, 7497783115765911443879, 632884743974716421132084
Offset: 0
-
terms = m = 30;
a094577[n_] := Sum[Binomial[n, k]*BellB[2n-k], {k, 0, n}];
egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m;
A094574 = CoefficientList[egf + O[x]^m, x]*Range[0, m-1]!;
a[n_] := Sum[Binomial[n, k]*A094574[[k+1]], {k, 0, n}];
Table[a[n], {n, 0, m-1}] (* Jean-François Alcover, May 24 2019 *)
-
from numpy import array
def toBinary(n, k):
ans=[]
for i in range(k):
ans.insert(0, n%2)
n=n>>1
return array(ans)
def powerSet(k): return [toBinary(n,k) for n in range(1,2**k)]
def courcelle(maxUses, remainingSets, exact=False):
if exact and not all(maxUses<=sum(remainingSets)): ans=0
elif len(remainingSets)==0: ans=1
else:
set0=remainingSets[0]
if all(set0<=maxUses): ans=courcelle(maxUses-set0,remainingSets[1:],exact=exact)
else: ans=0
ans+=courcelle(maxUses,remainingSets[1:],exact=exact)
return ans
for i in range(10):
print(i, courcelle(array([2]*i),powerSet(i),exact=False))
A178171
Number of collections of nonempty subsets of an n-element set where each element appears in at most 3 subsets.
Original entry on oeis.org
1, 2, 8, 109, 3623, 200522, 16514461, 1912959395, 298569495981, 60701549078701, 15647889334180500, 5003666238486522124, 1948975409748003520112, 910680909359710587298621, 503845222094502583681150340, 326363222435413478204610417626, 245078255691857705139839897934085
Offset: 0
At most 1 subset gives Bell numbers
A000110, at most 2 subsets gives
A178165.
A178173
Number of collections of nonempty subsets of an n-element set where each element appears in at most 4 subsets.
Original entry on oeis.org
1, 2, 8, 128, 11087, 2232875, 775098224, 428188962261, 355916994389700, 425272149099677521, 703909738878615927739, 1565842283246869237505246, 4565002967677134523844716754, 17076464900445281560851997140670, 80494979734877344662882495100752511
Offset: 0
Replacing limit of 2 with a limit of 1 gives the Bell numbers
A000110, limit of 2 gives
A178165, limit of 3 gives
A178171.
-
\\ See A330964 for efficient code to compute this sequence. - Andrew Howroyd, Jan 04 2020
-
from numpy import array
def toBinary(n,k):
ans=[]
for i in range(k):
ans.insert(0,n%2)
n=n>>1
return array(ans)
def powerSet(k): return [toBinary(n,k) for n in range(1,2**k)]
def courcelle(maxUses,remainingSets,exact=False):
if exact and not all(maxUses<=sum(remainingSets)): ans=0
elif len(remainingSets)==0: ans=1
else:
set0=remainingSets[0]
if all(set0<=maxUses): ans=courcelle(maxUses-set0,remainingSets[1:],exact=exact)
else: ans=0
ans+=courcelle(maxUses,remainingSets[1:],exact=exact)
return ans
for i in range(10):
print(i, courcelle(array([4]*i),powerSet(i),exact=False))
A374573
Number of sets of nonempty subsets of [n] where each element appears in at most n subsets.
Original entry on oeis.org
1, 2, 8, 109, 11087, 15312665, 422059040480, 312210595377427422, 7962423724145466121172404, 8668986293188852191645897272339367
Offset: 0
a(0) = 1: {}.
a(1) = 2: {}, {{1}}.
a(2) = 8: {}, {{1}}, {{2}}, {{1,2}}, {{1},{2}}, {{1},{1,2}}, {{2},{1,2}}, {{1},{2},{1,2}}.
Showing 1-6 of 6 results.
Comments