cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A318361 Number of strict set multipartitions (sets of sets) of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 0, 5, 1, 0, 0, 4, 0, 0, 0, 15, 0, 5, 0, 1, 0, 0, 0, 16, 0, 0, 8, 0, 0, 2, 0, 52, 0, 0, 0, 23, 0, 0, 0, 7, 0, 0, 0, 0, 5, 0, 0, 68, 0, 1, 0, 0, 0, 40, 0, 1, 0, 0, 0, 14, 0, 0, 1, 203, 0, 0, 0, 0, 0, 0, 0, 111, 0, 0, 4, 0, 0, 0, 0, 41, 80, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Aug 24 2018

Keywords

Examples

			The a(24) = 16 sets of sets with multiset union {1,1,2,3,4}:
  {{1},{1,2,3,4}}
  {{1,2},{1,3,4}}
  {{1,3},{1,2,4}}
  {{1,4},{1,2,3}}
  {{1},{2},{1,3,4}}
  {{1},{3},{1,2,4}}
  {{1},{4},{1,2,3}}
  {{1},{1,2},{3,4}}
  {{1},{1,3},{2,4}}
  {{1},{1,4},{2,3}}
  {{2},{1,3},{1,4}}
  {{3},{1,2},{1,4}}
  {{4},{1,2},{1,3}}
  {{1},{2},{3},{1,4}}
  {{1},{2},{4},{1,3}}
  {{1},{3},{4},{1,2}}
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[sqfacs[Times@@Prime/@nrmptn[n]]],{n,90}]
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
    count(sig)={my(r=0, A=O(x*x^vecmax(sig))); for(n=1, vecsum(sig)+1, my(s=0); forpart(p=n, my(q=prod(i=1, #p, 1 + x^p[i] + A)); s+=prod(i=1, #sig, polcoef(q, sig[i]))*(-1)^#p*permcount(p)); r+=(-1)^n*s/n!); r/2}
    a(n)={if(n==1, 1, my(s=sig(n)); if(#s==1, s[1]==1, count(sig(n))))} \\ Andrew Howroyd, Dec 18 2018

Formula

a(n) = A050326(A181821(n)).
a(prime(n)^k) = A188445(n, k). - Andrew Howroyd, Dec 17 2018

A330942 Array read by antidiagonals: A(n,k) is the number of binary matrices with k columns and any number of nonzero rows with n ones in every column and columns in nonincreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 7, 1, 1, 1, 8, 75, 32, 1, 1, 1, 16, 1105, 2712, 161, 1, 1, 1, 32, 20821, 449102, 116681, 842, 1, 1, 1, 64, 478439, 122886128, 231522891, 5366384, 4495, 1, 1, 1, 128, 12977815, 50225389432, 975712562347, 131163390878, 256461703, 24320, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2020

Keywords

Comments

The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.
A(n,k) is the number of labeled n-uniform hypergraphs with multiple edges allowed and with k edges and no isolated vertices. When n=2 these objects are multigraphs.

Examples

			Array begins:
============================================================
n\k | 0 1    2         3              4                5
----+-------------------------------------------------------
  0 | 1 1    1         1              1                1 ...
  1 | 1 1    2         4              8               16 ...
  2 | 1 1    7        75           1105            20821 ...
  3 | 1 1   32      2712         449102        122886128 ...
  4 | 1 1  161    116681      231522891     975712562347 ...
  5 | 1 1  842   5366384   131163390878 8756434117294432 ...
  6 | 1 1 4495 256461703 78650129124911 ...
  ...
The A(2,2) = 7 matrices are:
   [1 0]  [1 0]  [1 0]  [1 1]  [1 0]  [1 0]  [1 1]
   [1 0]  [0 1]  [0 1]  [1 0]  [1 1]  [0 1]  [1 1]
   [0 1]  [1 0]  [0 1]  [0 1]  [0 1]  [1 1]
   [0 1]  [0 1]  [1 0]
		

Crossrefs

Rows n=1..3 are A000012, A121316, A136246.
Columns k=0..3 are A000012, A000012, A226994, A137220.
The version with nonnegative integer entries is A331315.
Other variations considering distinct rows and columns and equivalence under different combinations of permutations of rows and columns are:
All solutions: A262809 (all), A331567 (distinct rows).
Up to row permutation: A188392, A188445, A331126, A331039.
Up to column permutation: this sequence, A331571, A331277, A331569.
Nonisomorphic: A331461, A331510, A331508, A331509.
Cf. A331638.

Programs

  • Mathematica
    T[n_, k_] := With[{m = n k}, Sum[Binomial[Binomial[j, n] + k - 1, k] Sum[ (-1)^(i - j) Binomial[i, j], {i, j, m}], {j, 0, m}]];
    Table[T[n - k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 10 2020, from PARI *)
  • PARI
    T(n, k)={my(m=n*k); sum(j=0, m, binomial(binomial(j, n)+k-1, k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}

Formula

A(n,k) = Sum_{j=0..n*k} binomial(binomial(j,n)+k-1, k) * (Sum_{i=j..n*k} (-1)^(i-j)*binomial(i,j)).
A(n, k) = Sum_{j=0..k} abs(Stirling1(k, j))*A262809(n, j)/k!.
A(n, k) = Sum_{j=0..k} binomial(k-1, k-j)*A331277(n, j).
A331638(n) = Sum_{d|n} A(n/d, d).

A319190 Number of regular hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 3, 19, 879, 5280907, 1069418570520767
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is regular if all vertices have the same degree. The span of a hypergraph is the union of its edges.

Examples

			The a(3) = 19 regular hypergraphs:
                 {{1,2,3}}
                {{1},{2,3}}
                {{2},{1,3}}
                {{3},{1,2}}
               {{1},{2},{3}}
            {{1},{2,3},{1,2,3}}
            {{2},{1,3},{1,2,3}}
            {{3},{1,2},{1,2,3}}
            {{1,2},{1,3},{2,3}}
           {{1},{2},{3},{1,2,3}}
           {{1},{2},{1,3},{2,3}}
           {{1},{3},{1,2},{2,3}}
           {{2},{3},{1,2},{1,3}}
        {{1,2},{1,3},{2,3},{1,2,3}}
       {{1},{2},{1,3},{2,3},{1,2,3}}
       {{1},{3},{1,2},{2,3},{1,2,3}}
       {{2},{3},{1,2},{1,3},{1,2,3}}
      {{1},{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{1,n}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,1,2^n}],{n,5}]

Extensions

a(6) from Andrew Howroyd, Mar 12 2020

A188392 T(n,k) = number of (n*k) X k binary arrays with rows in nonincreasing order and n ones in every column.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 15, 16, 4, 1, 52, 139, 39, 5, 1, 203, 1750, 862, 81, 6, 1, 877, 29388, 35775, 4079, 150, 7, 1, 4140, 624889, 2406208, 507549, 15791, 256, 8, 1, 21147, 16255738, 238773109, 127126912, 5442547, 52450, 410, 9, 1, 115975, 504717929, 32867762616
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2011

Keywords

Examples

			Array begins:
========================================================================
n\k| 1  2   3      4         5            6            7               8
---+--------------------------------------------------------------------
1  | 1  2   5     15        52          203           877           4140
2  | 1  3  16    139      1750        29388        624889       16255738
3  | 1  4  39    862     35775      2406208     238773109    32867762616
4  | 1  5  81   4079    507549    127126912   55643064708 38715666455777
5  | 1  6 150  15791   5442547   4762077620 8738543204786
6  | 1  7 256  52450  46757209 135029200594
7  | 1  8 410 154279 335279744
8  | 1  9 625 411180
9  | 1 10 915
     ...
All solutions for 6 X 2
..1..1....1..1....1..0....1..1
..1..1....1..1....1..0....1..0
..1..0....1..1....1..0....1..0
..0..1....0..0....0..1....0..1
..0..0....0..0....0..1....0..1
..0..0....0..0....0..1....0..0
		

Crossrefs

Columns 3..7 are A011863(n+1), A175707, A188389, A188390, A188391.
Main diagonal gives A188388.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, 1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p,n,k), [1,n]); s*q[#q-j]))} \\ Andrew Howroyd, Dec 12 2018

A219585 Number A(n,k) of k-partite partitions of {n}^k into distinct k-tuples; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 5, 2, 1, 1, 15, 40, 17, 2, 1, 1, 52, 457, 364, 46, 3, 1, 1, 203, 6995, 14595, 2897, 123, 4, 1, 1, 877, 136771, 937776, 407287, 21369, 323, 5, 1, 1, 4140, 3299218, 88507276, 107652681, 10200931, 148257, 809, 6, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 23 2012

Keywords

Comments

A(n,k) is the number of factorizations of m^n into distinct factors where m is a product of k distinct primes. A(2,2) = 5: (2*3)^2 = 36 has 5 factorizations into distinct factors: 36, 3*12, 4*9, 2*18, 2*3*6.

Examples

			A(1,3) = 5: [(1,1,1)], [(1,1,0),(0,0,1)], [(1,0,1),(0,1,0)], [(1,0,0),(0,1,0),(0,0,1)], [(0,1,1),(1,0,0)].
A(3,2) = 17: [(3,3)], [(3,0),(0,3)], [(3,2),(0,1)], [(2,3),(1,0)], [(3,1),(0,2)], [(2,2),(1,1)], [(1,3),(2,0)], [(2,1),(1,2)], [(2,1),(1,1),(0,1)], [(3,0),(0,2),(0,1)], [(2,2),(1,0),(0,1)], [(2,1),(0,2),(1,0)], [(1,2),(2,0),(0,1)], [(1,2),(1,1),(1,0)], [(0,3),(2,0),(1,0)], [(2,0),(1,1),(0,2)], [(2,0),(0,2),(1,0),(0,1)].
Square array A(n,k) begins:
  1,  1,   1,      1,          1,            1,         1, ...
  1,  1,   2,      5,         15,           52,       203, ...
  1,  1,   5,     40,        457,         6995,    136771, ...
  1,  2,  17,    364,      14595,       937776,  88507276, ...
  1,  2,  46,   2897,     407287,    107652681,  ...
  1,  3, 123,  21369,   10200931,  10781201973,  ...
  1,  4, 323, 148257,  233051939,  ...
  1,  5, 809, 970246, 4909342744,  ...
		

Crossrefs

Columns k=0..5 give: A000012, A000009, A219554, A219560, A219561, A219565.
Rows n=0..3 give: A000012, A000110, A094574, A319591.
Cf. A188445, A219727 (partitions of {n}^k into k-tuples), A318286.

Programs

  • Mathematica
    f[n_, k_] := f[n, k] = 1/2 Product[Sum[O[x[j]]^(n+1), {j, 1, k}]+1+ Product[x[j]^i[j], {j, 1, k}], Evaluate[Sequence @@ Table[{i[j], 0, n}, {j, 1, k}]]];
    a[0, ] = a[, 0] = 1; a[n_, k_] := SeriesCoefficient[f[n, k], Sequence @@ Table[{x[j], 0, n}, {j, 1, k}]];
    Table[Print[a[n-k, k]]; a[n-k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013, updated Sep 16 2019 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); EulerT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)} \\ Andrew Howroyd, Dec 16 2018

Formula

A(n,k) = [(Product_{j=1..k} x_j)^n] 1/2 * Product_{i_1,...,i_k>=0} (1+Product_{j=1..k} x_j^i_j).

A331039 Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set-systems on a k-set.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 5, 0, 0, 1, 0, 1, 43, 5, 0, 0, 1, 0, 1, 518, 175, 1, 0, 0, 1, 0, 1, 8186, 9426, 272, 0, 0, 0, 1, 0, 1, 163356, 751365, 64453, 205, 0, 0, 0, 1, 0, 1, 3988342, 84012191, 23553340, 248685, 80, 0, 0, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 08 2020

Keywords

Comments

An n-regular set-system is a finite set of nonempty sets in which each element appears in n blocks.
A set-system is T_0 if for every two distinct elements there exists a block containing one but not the other element.
A(n,k) is the number of binary matrices with k distinct columns and any number of distinct nonzero rows with n ones in every column and rows in decreasing lexicographic order.

Examples

			Array begins:
==========================================================
n\k | 0 1 2 3   4       5           6                7
----+-----------------------------------------------------
  0 | 1 1 0 0   0       0           0                0 ...
  1 | 1 1 1 1   1       1           1                1 ...
  2 | 1 0 1 5  43     518        8186           163356 ...
  3 | 1 0 0 5 175    9426      751365         84012191 ...
  4 | 1 0 0 1 272   64453    23553340      13241130441 ...
  5 | 1 0 0 0 205  248685   421934358    1176014951129 ...
  6 | 1 0 0 0  80  620548  5055634889   69754280936418 ...
  7 | 1 0 0 0  15 1057989 43402628681 2972156676325398 ...
  ...
The A(2,3) = 5 matrices are:
  [1 1 1]    [1 1 0]    [1 1 0]    [1 0 1]    [1 1 0]
  [1 0 0]    [1 0 1]    [1 0 0]    [1 0 0]    [1 0 1]
  [0 1 0]    [0 1 0]    [0 1 1]    [0 1 1]    [0 1 1]
  [0 0 1]    [0 0 1]    [0 0 1]    [0 1 0]
The corresponding set-systems are:
  {{1,2,3}, {1}, {2}, {3}},
  {{1,2}, {1,3}, {2,3}},
  {{1,2}, {1,3}, {2}, {3}},
  {{1,2}, {1}, {2,3}, {3}},
  {{1,3}, {1}, {2,3}, {2}}.
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, k<=1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)}

Formula

A(n, k) = Sum_{j=1..k} Stirling1(k, j)*A188445(n, j) for n, k >= 1.
A(n, k) = 0 for k >= 1, n > 2^(k-1).
A331654(n) = Sum_{d|n} A(n/d, d).

A331126 Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set multipartitions (multisets of sets) on a k-set.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 9, 3, 1, 1, 0, 1, 70, 29, 4, 1, 1, 0, 1, 794, 666, 68, 5, 1, 1, 0, 1, 12055, 28344, 3642, 134, 6, 1, 1, 0, 1, 233238, 1935054, 469368, 14951, 237, 7, 1, 1, 0, 1, 5556725, 193926796, 119843417, 5289611, 50985, 388, 8, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 10 2020

Keywords

Comments

An n-regular set multipartition is a finite multiset of nonempty sets in which each element appears in n blocks.
A set multipartition is T_0 if for every two distinct elements there exists a block containing one but not the other element.
A(n,k) is the number of binary matrices with k distinct columns and any number of nonzero rows with n ones in every column and rows in nonincreasing lexicographic order.

Examples

			Array begins:
====================================================================
n\k | 0 1 2   3      4         5             6                 7
----+---------------------------------------------------------------
  0 | 1 1 0   0      0         0             0                 0 ...
  1 | 1 1 1   1      1         1             1                 1 ...
  2 | 1 1 2   9     70       794         12055            233238 ...
  3 | 1 1 3  29    666     28344       1935054         193926796 ...
  4 | 1 1 4  68   3642    469368     119843417       53059346010 ...
  5 | 1 1 5 134  14951   5289611    4681749424     8639480647842 ...
  6 | 1 1 6 237  50985  46241343  134332244907   989821806791367 ...
  7 | 1 1 7 388 151901 333750928 3032595328876 85801167516707734 ...
     ...
The A(2,2) = 2 matrices are:
   [1 1]   [1 0]
   [1 0]   [1 0]
   [0 1]   [0 1]
           [0 1]
The corresponding set multipartitions are:
    {{1,2}, {1}, {2}},
    {{1}, {1}, {2}, {2}}.
		

Crossrefs

Rows n=1..3 are A000012, A014500, A331389.
Columns k=0..3 are A000012, A000012, A001477, A331390.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, k<=1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p, n, k), [1, n]); s*q[#q-j]))}

Formula

A(n, k) = Sum_{j=1..k} Stirling1(k, j)*A188392(n, j) for n, k >= 1.
A331391(n) = Sum_{d|n} A(n/d, d).

A060486 Tricoverings of an n-set.

Original entry on oeis.org

1, 0, 0, 5, 205, 11301, 904580, 101173251, 15207243828, 2975725761202, 738628553556470, 227636079973503479, 85554823285296622543, 38621481302086460057613, 20669385794052533823555309, 12966707189875262685801947906, 9441485712482676603570079314728
Offset: 0

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Examples

			There are 1 4-block tricovering, 3 5-block tricoverings and 1 6-block tricovering of a 3-set (cf. A060487), so a(3)=5.
		

Crossrefs

Formula

E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 15 2018

A331567 Array read by antidiagonals: A(n,k) is the number of binary matrices with k columns and any number of distinct nonzero rows with n ones in every column.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 0, 1, 1, 13, 6, 0, 1, 1, 75, 120, 0, 0, 1, 1, 541, 6174, 1104, 0, 0, 1, 1, 4683, 449520, 413088, 5040, 0, 0, 1, 1, 47293, 49686726, 329520720, 18481080, 0, 0, 0, 1, 1, 545835, 7455901320, 491236986720, 179438982360, 522481680, 0, 0, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 20 2020

Keywords

Examples

			Array begins:
===============================================================
n\k | 0 1 2    3          4              5                6
----+----------------------------------------------------------
  0 | 1 1 1    1          1              1                1 ...
  1 | 1 1 3   13         75            541             4683 ...
  2 | 1 0 6  120       6174         449520         49686726 ...
  3 | 1 0 0 1104     413088      329520720     491236986720 ...
  4 | 1 0 0 5040   18481080   179438982360 3785623968170400 ...
  5 | 1 0 0    0  522481680 70302503250720 ...
  6 | 1 0 0    0 7875584640 ...
  ...
The A(2,2) = 6 matrices are:
   [1 1]  [1 1]  [1 0]  [1 0]  [0 1]  [0 1]
   [1 0]  [0 1]  [1 1]  [0 1]  [1 1]  [1 0]
   [0 1]  [1 0]  [0 1]  [1 1]  [1 0]  [1 1]
		

Crossrefs

Rows n=1..3 are A000670, A331640, A331641.
Column k=5 is A331642.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, 1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }

Formula

A(n,k) = 0 for k > 0, n > 2^(k-1).
A(2^(k-1), k) = (2^k-1)! for k > 0.
A331643(n) = Sum_{d|n} A(n/d, d).

A330964 Array read by antidiagonals: A(n,k) is the number of sets of nonempty subsets of a k-element set where each element appears in at most n subsets.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 15, 8, 2, 1, 1, 52, 59, 8, 2, 1, 1, 203, 652, 109, 8, 2, 1, 1, 877, 9736, 3623, 128, 8, 2, 1, 1, 4140, 186478, 200522, 11087, 128, 8, 2, 1, 1, 21147, 4421018, 16514461, 2232875, 21380, 128, 8, 2, 1, 1, 115975, 126317785, 1912959395, 775098224, 15312665, 29228, 128, 8, 2, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 04 2020

Keywords

Comments

A(n,k) is the number of binary matrices with k columns and any number of nonzero rows with rows in decreasing order and at most n ones in every column.

Examples

			Array begins:
==================================================================
n\k | 0 1 2   3     4         5             6                7
----+-------------------------------------------------------------
  0 | 1 1 1   1     1         1             1                1 ...
  1 | 1 2 5  15    52       203           877             4140 ...
  2 | 1 2 8  59   652      9736        186478          4421018 ...
  3 | 1 2 8 109  3623    200522      16514461       1912959395 ...
  4 | 1 2 8 128 11087   2232875     775098224     428188962261 ...
  5 | 1 2 8 128 21380  15312665   22165394234   57353442460140 ...
  6 | 1 2 8 128 29228  70197998  422059040480 5051078354829005 ...
  7 | 1 2 8 128 32297 227731312 5686426671375 ...
      ...
The T(1,2) = 5 set systems are:
  {},
  {{1,2}},
  {{1,2}, {2}},
  {{1},{1,2}},
  {{1}, {2}}.
		

Crossrefs

Rows n=0..4 are A000012, A000110, A178165, A178171, A178173.
Main diagonal gives A374573.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); (vecsum(WeighT(v)) + 1)^k/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)}

Formula

Lim_{n->oo} A(n,k) = 2^k.
Showing 1-10 of 15 results. Next