cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A188445 T(n,k) is the number of (n*k) X k binary arrays with nonzero rows in decreasing order and n ones in every column.

Original entry on oeis.org

1, 2, 0, 5, 1, 0, 15, 8, 0, 0, 52, 80, 5, 0, 0, 203, 1088, 205, 1, 0, 0, 877, 19232, 11301, 278, 0, 0, 0, 4140, 424400, 904580, 67198, 205, 0, 0, 0, 21147, 11361786, 101173251, 24537905, 250735, 80, 0, 0, 0, 115975, 361058000, 15207243828, 13744869502
Offset: 1

Views

Author

R. H. Hardin, Mar 31 2011

Keywords

Examples

			Array begins:
============================================================================
n\k| 1 2 3   4       5          6             7              8             9
---+------------------------------------------------------------------------
1  | 1 2 5  15      52        203           877           4140         21147
2  | 0 1 8  80    1088      19232        424400       11361786     361058000
3  | 0 0 5 205   11301     904580     101173251    15207243828 2975725761202
4  | 0 0 1 278   67198   24537905   13744869502 11385203921707 ...
5  | 0 0 0 205  250735  425677958 1184910460297 ...
6  | 0 0 0  80  621348 5064948309 ...
7  | 0 0 0  15 1058139 ...
8  | 0 0 0   1 ...
...
Some solutions for 16 X 4:
  1 1 1 0    1 1 1 1    1 1 1 1    1 1 1 0    1 1 1 1
  1 0 1 1    1 1 0 1    1 1 0 0    1 0 1 1    1 1 0 0
  1 0 1 0    1 0 1 1    1 0 1 1    1 0 0 1    1 0 1 1
  1 0 0 1    1 0 0 0    1 0 0 0    1 0 0 0    1 0 0 0
  0 1 1 1    0 1 1 0    0 1 1 1    0 1 1 0    0 1 1 1
  0 1 0 1    0 1 0 0    0 1 0 0    0 1 0 1    0 1 0 0
  0 1 0 0    0 0 1 1    0 0 1 1    0 1 0 0    0 0 1 0
  0 0 0 0    0 0 0 0    0 0 0 0    0 0 1 1    0 0 0 1
  0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0
  0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0
  0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0
  0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0
  0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0
  0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0
  0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0
  0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0    0 0 0 0
		

Crossrefs

Columns 5..6 are A331127, A331129.
Column sums are A319190.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)} \\ Andrew Howroyd, Dec 16 2018

Formula

A(n,k) = 0 for n > 2^(k-1). - Andrew Howroyd, Jan 24 2020

A060070 Number of T_0-tricoverings of an n-set.

Original entry on oeis.org

1, 0, 0, 5, 175, 9426, 751365, 84012191, 12644839585, 2479642897109, 617049443550205, 190678639438170502, 71860665148118443795, 32527628234581386962713, 17454341903042193018433239, 10978059489008346809004564072, 8013452442154510131205645967978
Offset: 0

Views

Author

Vladeta Jovovic, Feb 21 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering. A covering of a set is a T_0-covering if for every two distinct elements of the set there exists a block of the covering containing one but not the other element.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Row n=3 of A331039.
Row sums of A059530.

Programs

  • PARI
    seq(n)={my(m=2*n, y='y + O('y^(n+1))); Vec(serlaplace(subst(Pol(exp(-x + x^2/2 + x^3*y/3 + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 3)*exp(-x^2*(1+y)^k/2 + O(x*x^m))*x^k/k!)), x, 1)))} \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for k-block T_0-tricoverings of an n-set is exp(-x+1/2*x^2+1/3*x^3*y)*Sum_{i=0..inf}(1+y)^binomial(i, 3)*exp(-1/2*x^2*(1+y)^i)*x^i/i!.
a(n) = Sum_{k=0..n} Stirling1(n, k)*A060486(k). - Andrew Howroyd, Jan 08 2020

Extensions

Terms a(15) and beyond from Andrew Howroyd, Jan 08 2020

A060069 Number of n-block T_0-tricoverings.

Original entry on oeis.org

1, 0, 0, 0, 2, 82194, 9185157387760082, 5573096894405951375691132323893805593, 47933892393105239218152796441416602126447041437452022947424986090407628
Offset: 0

Views

Author

Vladeta Jovovic, Feb 19 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering; A covering of a set is a T_0-covering if for every two distinct elements of the set there exists a block of the covering containing one but not the other element.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Column sums of A059530.

Formula

E.g.f. for n-block T_0-tricoverings of a k-set is exp(-x+1/2*x^2+1/3*x^3*y)*Sum_{i=0..inf} (1+y)^binomial(i, 3)*exp(-1/2*x^2*(1+y)^i)*x^i/i!.

A060487 Triangle T(n,k) of k-block tricoverings of an n-set (n >= 3, k >= 4).

Original entry on oeis.org

1, 3, 1, 7, 57, 95, 43, 3, 35, 717, 3107, 4520, 2465, 445, 12, 155, 7845, 75835, 244035, 325890, 195215, 50825, 4710, 70, 651, 81333, 1653771, 10418070, 27074575, 33453959, 20891962, 6580070, 965965, 52430, 465
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Examples

			Triangle begins:
  [1, 3, 1];
  [7, 57, 95, 43, 3];
  [35, 717, 3107, 4520, 2465, 445, 12];
  [155, 7845, 75835, 244035, 325890, 195215, 50825, 4710, 70];
  [651, 81333, 1653771, 10418070, 27074575, 33453959, 20891962, 6580070, 965965, 52430, 465];
   ...
There are 205 tricoverings of a 4-set(cf. A060486): 7 4-block, 57 5-block, 95 6-block, 43 7-block and 3 8-block tricoverings.
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
    row(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(y+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])*y^(m-n)/(1+y))}
    for(n=3, 8, print(Vecrev(row(3,n)))); \\ Andrew Howroyd, Dec 23 2018

Formula

E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).

A060483 Number of 5-block tricoverings of an n-set.

Original entry on oeis.org

3, 57, 717, 7845, 81333, 825237, 8300757, 83202645, 832809813, 8331237717, 83324947797, 833299785045, 8333199127893, 83332796486997, 833331185898837, 8333324743497045, 83333298973791573, 833333195894773077, 8333332783578305877, 83333331134311650645
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Programs

Formula

a(n) = (1/5!)*(10^n - 15*4^n + 45*2^n - 40).
Generally, e.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: 3*x^3*(2*x+1) / ((x-1)*(2*x-1)*(4*x-1)*(10*x-1)). - Colin Barker, Jan 11 2013

Extensions

More terms from Colin Barker, Jan 11 2013

A060491 Number of ordered tricoverings of an unlabeled n-set.

Original entry on oeis.org

1, 0, 0, 184, 17488, 2780752, 689187720, 236477490418, 107317805999204, 62318195302890305, 45081693413563797127, 39762626850034005271588, 42009504510315968282400843, 52381340312720286113688037624, 76118747309505733406576769607755
Offset: 0

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Examples

			There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060492).
		

Crossrefs

Programs

  • PARI
    seq(n)={my(m=2*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp(-x+x^2/2+x^3/3*y/(1-y))*Sum_{k=0..inf}1/(1-y)^binomial(k, 3)*exp(-x^2/2*1/(1-y)^n)*x^k/k!.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 30 2020

A060484 Number of 6-block tricoverings of an n-set.

Original entry on oeis.org

1, 95, 3107, 75835, 1653771, 34384875, 700030507, 14116715435, 283432939691, 5679127043755, 113683003777707, 2274630646577835, 45502044971338411, 910133025632152235, 18203564201836161707, 364080180268471397035
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Programs

  • Mathematica
    With[{c=1/6!},Table[c(20^n-6*10^n-15*8^n+135*4^n-310*2^n+240),{n,3,20}]] (* or *) LinearRecurrence[{45,-720,5220,-17664,25920,-12800},{1,95,3107,75835,1653771,34384875},20] (* Harvey P. Dale, Jan 05 2017 *)
  • PARI
    a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240) \\ Andrew Howroyd, Dec 15 2018

Formula

a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240).
E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: -x^3*(800*x^3+448*x^2-50*x-1) / ((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(10*x-1)*(20*x-1)). - Colin Barker, Jan 12 2013
a(n) = 45*a(n-1)-720*a(n-2)+5220*a(n-3)-17664*a(n-4)+25920*a(n-5)-12800*a(n-6). - Wesley Ivan Hurt, Oct 18 2021

A060485 Number of 7-block tricoverings of an n-set.

Original entry on oeis.org

43, 4520, 244035, 10418070, 401861943, 14778678180, 530817413155, 18837147108890, 664260814445943, 23345018969140440, 818942064306004275, 28699514624047140510, 1005201938765467579543, 35196266296400319440300
Offset: 4

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Formula

a(n) = (1/7!)*(35^n - 7*20^n - 21*15^n + 42*10^n + 105*8^n + 105*7^n + 70*5^n - 945*4^n - 525*3^n + 2450*2^n - 1470).
E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..infinity}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: x^4*(27300000*x^7 +9288000*x^6 -17908650*x^5 +6008735*x^4 -796380*x^3 +38552*x^2 +210*x -43) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(7*x -1)*(8*x -1)*(10*x -1)*(15*x -1)*(20*x -1)*(35*x -1)). - Colin Barker, Jan 12 2013
Showing 1-8 of 8 results.