A188445
T(n,k) is the number of (n*k) X k binary arrays with nonzero rows in decreasing order and n ones in every column.
Original entry on oeis.org
1, 2, 0, 5, 1, 0, 15, 8, 0, 0, 52, 80, 5, 0, 0, 203, 1088, 205, 1, 0, 0, 877, 19232, 11301, 278, 0, 0, 0, 4140, 424400, 904580, 67198, 205, 0, 0, 0, 21147, 11361786, 101173251, 24537905, 250735, 80, 0, 0, 0, 115975, 361058000, 15207243828, 13744869502
Offset: 1
Array begins:
============================================================================
n\k| 1 2 3 4 5 6 7 8 9
---+------------------------------------------------------------------------
1 | 1 2 5 15 52 203 877 4140 21147
2 | 0 1 8 80 1088 19232 424400 11361786 361058000
3 | 0 0 5 205 11301 904580 101173251 15207243828 2975725761202
4 | 0 0 1 278 67198 24537905 13744869502 11385203921707 ...
5 | 0 0 0 205 250735 425677958 1184910460297 ...
6 | 0 0 0 80 621348 5064948309 ...
7 | 0 0 0 15 1058139 ...
8 | 0 0 0 1 ...
...
Some solutions for 16 X 4:
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
1 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 0 0
1 0 1 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1
1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1
0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0
0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)} \\ Andrew Howroyd, Dec 16 2018
A060070
Number of T_0-tricoverings of an n-set.
Original entry on oeis.org
1, 0, 0, 5, 175, 9426, 751365, 84012191, 12644839585, 2479642897109, 617049443550205, 190678639438170502, 71860665148118443795, 32527628234581386962713, 17454341903042193018433239, 10978059489008346809004564072, 8013452442154510131205645967978
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
-
seq(n)={my(m=2*n, y='y + O('y^(n+1))); Vec(serlaplace(subst(Pol(exp(-x + x^2/2 + x^3*y/3 + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 3)*exp(-x^2*(1+y)^k/2 + O(x*x^m))*x^k/k!)), x, 1)))} \\ Andrew Howroyd, Jan 30 2020
A060069
Number of n-block T_0-tricoverings.
Original entry on oeis.org
1, 0, 0, 0, 2, 82194, 9185157387760082, 5573096894405951375691132323893805593, 47933892393105239218152796441416602126447041437452022947424986090407628
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
A060487
Triangle T(n,k) of k-block tricoverings of an n-set (n >= 3, k >= 4).
Original entry on oeis.org
1, 3, 1, 7, 57, 95, 43, 3, 35, 717, 3107, 4520, 2465, 445, 12, 155, 7845, 75835, 244035, 325890, 195215, 50825, 4710, 70, 651, 81333, 1653771, 10418070, 27074575, 33453959, 20891962, 6580070, 965965, 52430, 465
Offset: 3
Triangle begins:
[1, 3, 1];
[7, 57, 95, 43, 3];
[35, 717, 3107, 4520, 2465, 445, 12];
[155, 7845, 75835, 244035, 325890, 195215, 50825, 4710, 70];
[651, 81333, 1653771, 10418070, 27074575, 33453959, 20891962, 6580070, 965965, 52430, 465];
...
There are 205 tricoverings of a 4-set(cf. A060486): 7 4-block, 57 5-block, 95 6-block, 43 7-block and 3 8-block tricoverings.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
row(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(y+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])*y^(m-n)/(1+y))}
for(n=3, 8, print(Vecrev(row(3,n)))); \\ Andrew Howroyd, Dec 23 2018
A060483
Number of 5-block tricoverings of an n-set.
Original entry on oeis.org
3, 57, 717, 7845, 81333, 825237, 8300757, 83202645, 832809813, 8331237717, 83324947797, 833299785045, 8333199127893, 83332796486997, 833331185898837, 8333324743497045, 83333298973791573, 833333195894773077, 8333332783578305877, 83333331134311650645
Offset: 3
Cf.
A006095,
A060484,
A060485,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
A060491
Number of ordered tricoverings of an unlabeled n-set.
Original entry on oeis.org
1, 0, 0, 184, 17488, 2780752, 689187720, 236477490418, 107317805999204, 62318195302890305, 45081693413563797127, 39762626850034005271588, 42009504510315968282400843, 52381340312720286113688037624, 76118747309505733406576769607755
Offset: 0
There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060492).
Cf.
A060486,
A060487,
A060090,
A060092,
A060069,
A060070,
A060051,
A060052,
A060053,
A002718,
A059443.
-
seq(n)={my(m=2*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020
A060484
Number of 6-block tricoverings of an n-set.
Original entry on oeis.org
1, 95, 3107, 75835, 1653771, 34384875, 700030507, 14116715435, 283432939691, 5679127043755, 113683003777707, 2274630646577835, 45502044971338411, 910133025632152235, 18203564201836161707, 364080180268471397035
Offset: 3
Cf.
A006095,
A060483,
A060485,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
-
With[{c=1/6!},Table[c(20^n-6*10^n-15*8^n+135*4^n-310*2^n+240),{n,3,20}]] (* or *) LinearRecurrence[{45,-720,5220,-17664,25920,-12800},{1,95,3107,75835,1653771,34384875},20] (* Harvey P. Dale, Jan 05 2017 *)
-
a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240) \\ Andrew Howroyd, Dec 15 2018
A060485
Number of 7-block tricoverings of an n-set.
Original entry on oeis.org
43, 4520, 244035, 10418070, 401861943, 14778678180, 530817413155, 18837147108890, 664260814445943, 23345018969140440, 818942064306004275, 28699514624047140510, 1005201938765467579543, 35196266296400319440300
Offset: 4
- Andrew Howroyd, Table of n, a(n) for n = 4..200
- Index entries for linear recurrences with constant coefficients, signature (110, -4991, 124120, -1887459, 18470550, -118758569, 501056740, -1355000500, 2223560000, -1973160000, 705600000).
Cf.
A006095,
A060483,
A060484,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
Showing 1-8 of 8 results.
Comments