A060487
Triangle T(n,k) of k-block tricoverings of an n-set (n >= 3, k >= 4).
Original entry on oeis.org
1, 3, 1, 7, 57, 95, 43, 3, 35, 717, 3107, 4520, 2465, 445, 12, 155, 7845, 75835, 244035, 325890, 195215, 50825, 4710, 70, 651, 81333, 1653771, 10418070, 27074575, 33453959, 20891962, 6580070, 965965, 52430, 465
Offset: 3
Triangle begins:
[1, 3, 1];
[7, 57, 95, 43, 3];
[35, 717, 3107, 4520, 2465, 445, 12];
[155, 7845, 75835, 244035, 325890, 195215, 50825, 4710, 70];
[651, 81333, 1653771, 10418070, 27074575, 33453959, 20891962, 6580070, 965965, 52430, 465];
...
There are 205 tricoverings of a 4-set(cf. A060486): 7 4-block, 57 5-block, 95 6-block, 43 7-block and 3 8-block tricoverings.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
row(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(y+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])*y^(m-n)/(1+y))}
for(n=3, 8, print(Vecrev(row(3,n)))); \\ Andrew Howroyd, Dec 23 2018
A060483
Number of 5-block tricoverings of an n-set.
Original entry on oeis.org
3, 57, 717, 7845, 81333, 825237, 8300757, 83202645, 832809813, 8331237717, 83324947797, 833299785045, 8333199127893, 83332796486997, 833331185898837, 8333324743497045, 83333298973791573, 833333195894773077, 8333332783578305877, 83333331134311650645
Offset: 3
Cf.
A006095,
A060484,
A060485,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
A060485
Number of 7-block tricoverings of an n-set.
Original entry on oeis.org
43, 4520, 244035, 10418070, 401861943, 14778678180, 530817413155, 18837147108890, 664260814445943, 23345018969140440, 818942064306004275, 28699514624047140510, 1005201938765467579543, 35196266296400319440300
Offset: 4
- Andrew Howroyd, Table of n, a(n) for n = 4..200
- Index entries for linear recurrences with constant coefficients, signature (110, -4991, 124120, -1887459, 18470550, -118758569, 501056740, -1355000500, 2223560000, -1973160000, 705600000).
Cf.
A006095,
A060483,
A060484,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
A060490
Number of 6-block ordered tricoverings of an unlabeled n-set.
Original entry on oeis.org
0, 0, 120, 3030, 24552, 130740, 551640, 1997415, 6470420, 19219462, 53187840, 138658760, 343297780, 812249250, 1845669776, 4044119530, 8573706300, 17637474350, 35294157340, 68850086745, 131179071560, 244518601660, 446576824800, 800201972990, 1408466719120
Offset: 1
a(1)=a(2)=0 prepended and terms a(23) and beyond from
Andrew Howroyd, Jan 30 2020
Showing 1-4 of 4 results.
Comments