A060487
Triangle T(n,k) of k-block tricoverings of an n-set (n >= 3, k >= 4).
Original entry on oeis.org
1, 3, 1, 7, 57, 95, 43, 3, 35, 717, 3107, 4520, 2465, 445, 12, 155, 7845, 75835, 244035, 325890, 195215, 50825, 4710, 70, 651, 81333, 1653771, 10418070, 27074575, 33453959, 20891962, 6580070, 965965, 52430, 465
Offset: 3
Triangle begins:
[1, 3, 1];
[7, 57, 95, 43, 3];
[35, 717, 3107, 4520, 2465, 445, 12];
[155, 7845, 75835, 244035, 325890, 195215, 50825, 4710, 70];
[651, 81333, 1653771, 10418070, 27074575, 33453959, 20891962, 6580070, 965965, 52430, 465];
...
There are 205 tricoverings of a 4-set(cf. A060486): 7 4-block, 57 5-block, 95 6-block, 43 7-block and 3 8-block tricoverings.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
row(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(y+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])*y^(m-n)/(1+y))}
for(n=3, 8, print(Vecrev(row(3,n)))); \\ Andrew Howroyd, Dec 23 2018
A060486
Tricoverings of an n-set.
Original entry on oeis.org
1, 0, 0, 5, 205, 11301, 904580, 101173251, 15207243828, 2975725761202, 738628553556470, 227636079973503479, 85554823285296622543, 38621481302086460057613, 20669385794052533823555309, 12966707189875262685801947906, 9441485712482676603570079314728
Offset: 0
There are 1 4-block tricovering, 3 5-block tricoverings and 1 6-block tricovering of a 3-set (cf. A060487), so a(3)=5.
Cf.
A006095,
A060483-
A060485, (row sums of)
A060487,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
A060483
Number of 5-block tricoverings of an n-set.
Original entry on oeis.org
3, 57, 717, 7845, 81333, 825237, 8300757, 83202645, 832809813, 8331237717, 83324947797, 833299785045, 8333199127893, 83332796486997, 833331185898837, 8333324743497045, 83333298973791573, 833333195894773077, 8333332783578305877, 83333331134311650645
Offset: 3
Cf.
A006095,
A060484,
A060485,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
A060484
Number of 6-block tricoverings of an n-set.
Original entry on oeis.org
1, 95, 3107, 75835, 1653771, 34384875, 700030507, 14116715435, 283432939691, 5679127043755, 113683003777707, 2274630646577835, 45502044971338411, 910133025632152235, 18203564201836161707, 364080180268471397035
Offset: 3
Cf.
A006095,
A060483,
A060485,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
-
With[{c=1/6!},Table[c(20^n-6*10^n-15*8^n+135*4^n-310*2^n+240),{n,3,20}]] (* or *) LinearRecurrence[{45,-720,5220,-17664,25920,-12800},{1,95,3107,75835,1653771,34384875},20] (* Harvey P. Dale, Jan 05 2017 *)
-
a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240) \\ Andrew Howroyd, Dec 15 2018
Showing 1-4 of 4 results.
Comments