cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A060070 Number of T_0-tricoverings of an n-set.

Original entry on oeis.org

1, 0, 0, 5, 175, 9426, 751365, 84012191, 12644839585, 2479642897109, 617049443550205, 190678639438170502, 71860665148118443795, 32527628234581386962713, 17454341903042193018433239, 10978059489008346809004564072, 8013452442154510131205645967978
Offset: 0

Views

Author

Vladeta Jovovic, Feb 21 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering. A covering of a set is a T_0-covering if for every two distinct elements of the set there exists a block of the covering containing one but not the other element.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Row n=3 of A331039.
Row sums of A059530.

Programs

  • PARI
    seq(n)={my(m=2*n, y='y + O('y^(n+1))); Vec(serlaplace(subst(Pol(exp(-x + x^2/2 + x^3*y/3 + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 3)*exp(-x^2*(1+y)^k/2 + O(x*x^m))*x^k/k!)), x, 1)))} \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for k-block T_0-tricoverings of an n-set is exp(-x+1/2*x^2+1/3*x^3*y)*Sum_{i=0..inf}(1+y)^binomial(i, 3)*exp(-1/2*x^2*(1+y)^i)*x^i/i!.
a(n) = Sum_{k=0..n} Stirling1(n, k)*A060486(k). - Andrew Howroyd, Jan 08 2020

Extensions

Terms a(15) and beyond from Andrew Howroyd, Jan 08 2020

A060090 Number of ordered bicoverings of an unlabeled n-set.

Original entry on oeis.org

1, 0, 3, 23, 290, 4298, 79143, 1702923, 42299820, 1188147639, 37276597020, 1291633545897, 48995506718702, 2019395409175529, 89864601931874318, 4294295828157319651, 219321170795303112118, 11922219151375200468886
Offset: 0

Views

Author

Vladeta Jovovic, Feb 25 2001

Keywords

Examples

			There are 23 ordered bicoverings of an unlabeled 3-set, 7 3-block bicoverings:
1 ( { 3 }, { 1, 2 }, { 1, 2, 3 } )
2 ( { 3 }, { 1, 2, 3 }, { 1, 2 } )
3 ( { 2, 3 }, { 1 }, { 1, 2, 3 } )
4 ( { 2, 3 }, { 1, 3 }, { 1, 2 } )
5 ( { 2, 3 }, { 1, 2, 3 }, { 1 } )
6 ( { 1, 2, 3 }, { 3 }, { 1, 2 } )
7 ( { 1, 2, 3 }, { 2, 3 }, { 1 } )
and 16 4-block bicoverings:
1 ( { 3 }, { 2 }, { 1 }, { 1, 2, 3 } )
2 ( { 3 }, { 2 }, { 1, 3 }, { 1, 2 } )
3 ( { 3 }, { 2 }, { 1, 2 }, { 1, 3 } )
4 ( { 3 }, { 2 }, { 1, 2, 3 }, { 1 } )
5 ( { 3 }, { 2, 3 }, { 1 }, { 1, 2 } )
6 ( { 3 }, { 2, 3 }, { 1, 2 }, { 1 } )
7 ( { 3 }, { 1, 2 }, { 2 }, { 1, 3 } )
8 ( { 3 }, { 1, 2 }, { 2, 3 }, { 1 } )
9 ( { 3 }, { 1, 2, 3 }, { 2 }, { 1 } )
10 ( { 2, 3 }, { 3 }, { 1 }, { 1, 2 } )
11 ( { 2, 3 }, { 3 }, { 1, 2 }, { 1 } )
12 ( { 2, 3 }, { 1 }, { 3 }, { 1, 2 } )
13 ( { 2, 3 }, { 1 }, { 1, 3 }, { 2 } )
14 ( { 2, 3 }, { 1, 3 }, { 2 }, { 1 } )
15 ( { 2, 3 }, { 1, 3 }, { 1 }, { 2 } )
16 ( { 1, 2, 3 }, { 3 }, { 2 }, { 1 } )
		

Crossrefs

Row n=2 of A331571.
Row sums of A060092.

Programs

  • PARI
    seq(n)={my(m=3*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x - x^2*y/(2*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 2)*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for ordered k-block bicoverings of an unlabeled n-set is exp(-x-x^2/2*y/(1-y)) * Sum_{k>=0} 1/(1-y)^binomial(k,2)*x^k/k!.

A060051 Number of n-block r-bicoverings.

Original entry on oeis.org

1, 0, 0, 2, 79, 82117, 4936900199, 27555467226181396, 20554872166566046969648895, 2786548447182420815380482508924733911, 89607283195144164483079065133414172790220498449945, 864608448649084311874549352448884076627916391005243593208944730790
Offset: 0

Views

Author

Vladeta Jovovic, Feb 15 2001

Keywords

Comments

A bicovering is an r-bicovering if the intersection of every two blocks contains at most one element.

Examples

			There are 2 3-block r-bicoverings: {{1},{2},{1,2}} and {{1,2},{1,3},{2,3}}.
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Column sums of A060052.

Formula

E.g.f. for number of n-block r-bicoverings of a k-set is exp(-x-1/2*x^2*y)*Sum_{i=0..inf} (1+y)^binomial(i, 2)*x^i/i!.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 30 2020

A060487 Triangle T(n,k) of k-block tricoverings of an n-set (n >= 3, k >= 4).

Original entry on oeis.org

1, 3, 1, 7, 57, 95, 43, 3, 35, 717, 3107, 4520, 2465, 445, 12, 155, 7845, 75835, 244035, 325890, 195215, 50825, 4710, 70, 651, 81333, 1653771, 10418070, 27074575, 33453959, 20891962, 6580070, 965965, 52430, 465
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Examples

			Triangle begins:
  [1, 3, 1];
  [7, 57, 95, 43, 3];
  [35, 717, 3107, 4520, 2465, 445, 12];
  [155, 7845, 75835, 244035, 325890, 195215, 50825, 4710, 70];
  [651, 81333, 1653771, 10418070, 27074575, 33453959, 20891962, 6580070, 965965, 52430, 465];
   ...
There are 205 tricoverings of a 4-set(cf. A060486): 7 4-block, 57 5-block, 95 6-block, 43 7-block and 3 8-block tricoverings.
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
    row(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(y+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])*y^(m-n)/(1+y))}
    for(n=3, 8, print(Vecrev(row(3,n)))); \\ Andrew Howroyd, Dec 23 2018

Formula

E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).

A060486 Tricoverings of an n-set.

Original entry on oeis.org

1, 0, 0, 5, 205, 11301, 904580, 101173251, 15207243828, 2975725761202, 738628553556470, 227636079973503479, 85554823285296622543, 38621481302086460057613, 20669385794052533823555309, 12966707189875262685801947906, 9441485712482676603570079314728
Offset: 0

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Examples

			There are 1 4-block tricovering, 3 5-block tricoverings and 1 6-block tricovering of a 3-set (cf. A060487), so a(3)=5.
		

Crossrefs

Formula

E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 15 2018

A059530 Triangle T(n,k) of k-block T_0-tricoverings of an n-set, n >= 3, k = 0..2*n.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 39, 89, 43, 3, 0, 0, 0, 0, 0, 252, 2192, 4090, 2435, 445, 12, 0, 0, 0, 0, 0, 1260, 37080, 179890, 289170, 188540, 50645, 4710, 70, 0, 0, 0, 0, 0, 5040, 536760, 6052730, 20660055, 29432319, 19826737, 6481160, 964495, 52430
Offset: 3

Views

Author

Vladeta Jovovic, Feb 22 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering. A covering of a set is a T_0-covering if for every two distinct elements of the set there exists a block of the covering containing one but not the other element.

Examples

			Triangle begins:
  [0, 0, 0, 0, 1, 3, 1],
  [0, 0, 0, 0, 1, 39, 89, 43, 3],
  [0, 0, 0, 0, 0, 252, 2192, 4090, 2435, 445, 12],
  [0, 0, 0, 0, 0, 1260, 37080, 179890, 289170, 188540, 50645, 4710, 70],
   ...
There are 5 = 1 + 3 + 1 T_0-tricoverings of a 3-set and 175 = 1 + 39 + 89 + 43 + 3 T_0-tricoverings of a 4-set, cf. A060070.
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Column sums are A060069.
Row sums are A060070.

Programs

  • PARI
    \\ gets k-th column as vector
    C(k)=if(k<4, [], Vecrev(serlaplace(polcoef(exp(-x + x^2/2 + x^3*y/3 + O(x*x^k))*sum(i=0, 2*k, (1+y)^binomial(i, 3)*exp(-x^2*(1+y)^i/2 + O(x*x^k))*x^i/i!), k))/y)) \\ Andrew Howroyd, Jan 30 2020
    
  • PARI
    T(n)={my(m=2*n, y='y + O('y^(n+1))); my(g=exp(-x + x^2/2 + x^3*y/3 + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 3)*exp(-x^2*(1+y)^k/2 + O(x*x^m))*x^k/k!)); Mat([Col(serlaplace(p), -n) | p<-Vec(g)[2..m+1]]);}
    { my(A=T(8)); for(n=3, matsize(A)[1], print(concat([0], A[n, 1..2*n]))) } \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for k-block T_0-tricoverings of an n-set is exp(-x+1/2*x^2+1/3*x^3*y)*Sum_{i=0..inf}(1+y)^binomial(i, 3)*exp(-1/2*x^2*(1+y)^i)*x^i/i!.
T(n,k) = 0 for n > binomial(k, 3). - Andrew Howroyd, Jan 30 2020

A060483 Number of 5-block tricoverings of an n-set.

Original entry on oeis.org

3, 57, 717, 7845, 81333, 825237, 8300757, 83202645, 832809813, 8331237717, 83324947797, 833299785045, 8333199127893, 83332796486997, 833331185898837, 8333324743497045, 83333298973791573, 833333195894773077, 8333332783578305877, 83333331134311650645
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Programs

Formula

a(n) = (1/5!)*(10^n - 15*4^n + 45*2^n - 40).
Generally, e.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: 3*x^3*(2*x+1) / ((x-1)*(2*x-1)*(4*x-1)*(10*x-1)). - Colin Barker, Jan 11 2013

Extensions

More terms from Colin Barker, Jan 11 2013

A060491 Number of ordered tricoverings of an unlabeled n-set.

Original entry on oeis.org

1, 0, 0, 184, 17488, 2780752, 689187720, 236477490418, 107317805999204, 62318195302890305, 45081693413563797127, 39762626850034005271588, 42009504510315968282400843, 52381340312720286113688037624, 76118747309505733406576769607755
Offset: 0

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Examples

			There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060492).
		

Crossrefs

Programs

  • PARI
    seq(n)={my(m=2*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp(-x+x^2/2+x^3/3*y/(1-y))*Sum_{k=0..inf}1/(1-y)^binomial(k, 3)*exp(-x^2/2*1/(1-y)^n)*x^k/k!.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 30 2020

A060484 Number of 6-block tricoverings of an n-set.

Original entry on oeis.org

1, 95, 3107, 75835, 1653771, 34384875, 700030507, 14116715435, 283432939691, 5679127043755, 113683003777707, 2274630646577835, 45502044971338411, 910133025632152235, 18203564201836161707, 364080180268471397035
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Programs

  • Mathematica
    With[{c=1/6!},Table[c(20^n-6*10^n-15*8^n+135*4^n-310*2^n+240),{n,3,20}]] (* or *) LinearRecurrence[{45,-720,5220,-17664,25920,-12800},{1,95,3107,75835,1653771,34384875},20] (* Harvey P. Dale, Jan 05 2017 *)
  • PARI
    a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240) \\ Andrew Howroyd, Dec 15 2018

Formula

a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240).
E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: -x^3*(800*x^3+448*x^2-50*x-1) / ((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(10*x-1)*(20*x-1)). - Colin Barker, Jan 12 2013
a(n) = 45*a(n-1)-720*a(n-2)+5220*a(n-3)-17664*a(n-4)+25920*a(n-5)-12800*a(n-6). - Wesley Ivan Hurt, Oct 18 2021

A060485 Number of 7-block tricoverings of an n-set.

Original entry on oeis.org

43, 4520, 244035, 10418070, 401861943, 14778678180, 530817413155, 18837147108890, 664260814445943, 23345018969140440, 818942064306004275, 28699514624047140510, 1005201938765467579543, 35196266296400319440300
Offset: 4

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Formula

a(n) = (1/7!)*(35^n - 7*20^n - 21*15^n + 42*10^n + 105*8^n + 105*7^n + 70*5^n - 945*4^n - 525*3^n + 2450*2^n - 1470).
E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..infinity}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: x^4*(27300000*x^7 +9288000*x^6 -17908650*x^5 +6008735*x^4 -796380*x^3 +38552*x^2 +210*x -43) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(7*x -1)*(8*x -1)*(10*x -1)*(15*x -1)*(20*x -1)*(35*x -1)). - Colin Barker, Jan 12 2013
Showing 1-10 of 10 results.