cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A331571 Array read by antidiagonals: A(n,k) is the number of binary matrices with k columns and any number of distinct nonzero rows with n ones in every column and columns in nonincreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 4, 3, 0, 1, 1, 8, 23, 0, 0, 1, 1, 16, 290, 184, 0, 0, 1, 1, 32, 4298, 17488, 840, 0, 0, 1, 1, 64, 79143, 2780752, 771305, 0, 0, 0, 1, 1, 128, 1702923, 689187720, 1496866413, 21770070, 0, 0, 0, 1, 1, 256, 42299820, 236477490418, 5261551562405, 585897733896, 328149360, 0, 0, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 20 2020

Keywords

Comments

The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.

Examples

			Array begins:
===============================================================
n\k | 0 1 2   3         4               5                 6
----+----------------------------------------------------------
  0 | 1 1 1   1         1               1                 1 ...
  1 | 1 1 2   4         8              16                32 ...
  2 | 1 0 3  23       290            4298             79143 ...
  3 | 1 0 0 184     17488         2780752         689187720 ...
  4 | 1 0 0 840    771305      1496866413     5261551562405 ...
  5 | 1 0 0   0  21770070    585897733896 30607728081550686 ...
  6 | 1 0 0   0 328149360 161088785679360 ...
  ...
The A(2,2) = 3 matrices are:
   [1 1]  [1 0]  [1 0]
   [1 0]  [1 1]  [0 1]
   [0 1]  [0 1]  [1 1]
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n] + k - 1, k)/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, 1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }

Formula

A(n, k) = Sum_{j=0..k} abs(Stirling1(k, j))*A331567(n, j)/k!.
A(n, k) = Sum_{j=0..k} binomial(k-1, k-j)*A331569(n, j).
A(n, k) = 0 for k > 0, n > 2^(k-1).
A331653(n) = Sum_{d|n} A(n/d, d).

A060487 Triangle T(n,k) of k-block tricoverings of an n-set (n >= 3, k >= 4).

Original entry on oeis.org

1, 3, 1, 7, 57, 95, 43, 3, 35, 717, 3107, 4520, 2465, 445, 12, 155, 7845, 75835, 244035, 325890, 195215, 50825, 4710, 70, 651, 81333, 1653771, 10418070, 27074575, 33453959, 20891962, 6580070, 965965, 52430, 465
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Examples

			Triangle begins:
  [1, 3, 1];
  [7, 57, 95, 43, 3];
  [35, 717, 3107, 4520, 2465, 445, 12];
  [155, 7845, 75835, 244035, 325890, 195215, 50825, 4710, 70];
  [651, 81333, 1653771, 10418070, 27074575, 33453959, 20891962, 6580070, 965965, 52430, 465];
   ...
There are 205 tricoverings of a 4-set(cf. A060486): 7 4-block, 57 5-block, 95 6-block, 43 7-block and 3 8-block tricoverings.
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
    row(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(y+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])*y^(m-n)/(1+y))}
    for(n=3, 8, print(Vecrev(row(3,n)))); \\ Andrew Howroyd, Dec 23 2018

Formula

E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).

A060092 Triangle T(n,k) of k-block ordered bicoverings of an unlabeled n-set, n >= 2, k = 3..n+floor(n/2).

Original entry on oeis.org

3, 7, 16, 12, 63, 125, 90, 18, 162, 722, 1716, 1680, 25, 341, 2565, 11350, 27342, 29960, 7560, 33, 636, 7180, 49860, 208302, 503000, 631512, 302400, 42, 1092, 17335, 173745, 1099602, 4389875, 10762299, 14975730, 9632700, 1247400
Offset: 2

Views

Author

Vladeta Jovovic, Feb 26 2001

Keywords

Comments

All columns are polynomials of order binomial(k, 2). - Andrew Howroyd, Jan 30 2020

Examples

			[3],
[7, 16],
[12, 63, 125, 90],
[18, 162, 722, 1716, 1680],
[25, 341, 2565, 11350, 27342, 29960, 7560],
[33, 636, 7180, 49860, 208302, 503000, 631512, 302400],
[42, 1092, 17335, 173745, 1099602, 4389875, 10762299, 14975730, 9632700, 1247400], ...
There are 23=7+16 ordered bicoverings of an unlabeled 3-set: 7 3-block bicoverings and 16 4-block bicoverings, cf. A060090.
		

Crossrefs

Row sums are A060090.
Columns k=3..7 are A055998(n-1), A060091, A060093, A060094, A060095.

Programs

  • PARI
    \\ gives g.f. of k-th column.
    ColGf(k) = k!*polcoef(exp(-x - x^2*y/(2*(1-y)) + O(x*x^k))*sum(j=0, k, 1/(1-y)^binomial(j, 2)*x^j/j!), k) \\ Andrew Howroyd, Jan 30 2020
    
  • PARI
    T(n)={my(m=(3*n\2), y='y + O('y^(n+1))); my(g=serlaplace(exp(-x - x^2*y/(2*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 2)*x^k/k!))); Mat([Col(p/y^2, -n) | p<-Vec(g)[2..m+1]])}
    { my(A=T(8)); for(n=2, matsize(A)[1], print(A[n, 3..3*n\2])) } \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for k-block ordered bicoverings of an unlabeled n-set is exp(-x-x^2/2*y/(1-y))*Sum_{k=0..inf} 1/(1-y)^binomial(k, 2)*x^k/k!.

A060486 Tricoverings of an n-set.

Original entry on oeis.org

1, 0, 0, 5, 205, 11301, 904580, 101173251, 15207243828, 2975725761202, 738628553556470, 227636079973503479, 85554823285296622543, 38621481302086460057613, 20669385794052533823555309, 12966707189875262685801947906, 9441485712482676603570079314728
Offset: 0

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Examples

			There are 1 4-block tricovering, 3 5-block tricoverings and 1 6-block tricovering of a 3-set (cf. A060487), so a(3)=5.
		

Crossrefs

Formula

E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).

Extensions

Terms a(11) and beyond from Andrew Howroyd, Dec 15 2018

A060095 Number of 7-block ordered bicoverings of an unlabeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 0, 1680, 27342, 208302, 1099602, 4636072, 16734438, 53810484, 158053119, 431305959, 1106791524, 2694914978, 6269281305, 14010246285, 30208869495, 63074014815, 127909521180, 252581107180, 486738385140
Offset: 0

Views

Author

Vladeta Jovovic, Feb 26 2001

Keywords

Crossrefs

Column k=7 of A060092.

Programs

  • PARI
    a(n) = if(n<1, 0, binomial(n + 20, n) - 7*binomial(n + 14, 14) - 21*binomial(n + 10, 10) + 42*binomial(n + 9, 9) + 105*binomial(n + 6, 6) - 140*binomial(n + 5, 5) + 105*binomial(n + 4, 4) - 420*binomial(n + 3, 3) + 35*binomial(n + 2, 2) + 1050*binomial(n + 1, 1) - 1050*binomial(n, 0) + 300*binomial(n - 1, - 1)) \\ Harry J. Smith, Jul 01 2009

Formula

a(n) = binomial(n+20, n) - 7*binomial(n+14, 14) - 21*binomial(n+10, 10) + 42*binomial(n+9, 9) + 105*binomial(n+6, 6) - 140*binomial(n+5, 5) + 105*binomial(n+4, 4) - 420*binomial(n+3, 3) + 35*binomial(n+2, 2) + 1050*binomial(n+1, 1) - 1050*binomial(n, 0) + 300*binomial(n-1, -1).
G.f.: y^5*(-1680 - 7005635*y^7 + 5039622*y^6 - 2707236*y^5 + 1022210*y^4 - 232680*y^3 + 13080*y^2 + 7938*y - 5250*y^15 + 300*y^16 + 43050*y^14 - 6227505*y^9 + 4042780*y^10 + 7485450*y^8 - 219485*y^13 + 778260*y^12 - 2033220*y^11)/(-1 + y)^21.
E.g.f. for k-block ordered bicoverings of an unlabeled n-set is exp(-x - x^2/2*y/(1 - y))*Sum_{k>=0} 1/(1 - y)^binomial(k, 2)*x^k/k!.

A060483 Number of 5-block tricoverings of an n-set.

Original entry on oeis.org

3, 57, 717, 7845, 81333, 825237, 8300757, 83202645, 832809813, 8331237717, 83324947797, 833299785045, 8333199127893, 83332796486997, 833331185898837, 8333324743497045, 83333298973791573, 833333195894773077, 8333332783578305877, 83333331134311650645
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Programs

Formula

a(n) = (1/5!)*(10^n - 15*4^n + 45*2^n - 40).
Generally, e.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: 3*x^3*(2*x+1) / ((x-1)*(2*x-1)*(4*x-1)*(10*x-1)). - Colin Barker, Jan 11 2013

Extensions

More terms from Colin Barker, Jan 11 2013

A060491 Number of ordered tricoverings of an unlabeled n-set.

Original entry on oeis.org

1, 0, 0, 184, 17488, 2780752, 689187720, 236477490418, 107317805999204, 62318195302890305, 45081693413563797127, 39762626850034005271588, 42009504510315968282400843, 52381340312720286113688037624, 76118747309505733406576769607755
Offset: 0

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Examples

			There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060492).
		

Crossrefs

Programs

  • PARI
    seq(n)={my(m=2*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp(-x+x^2/2+x^3/3*y/(1-y))*Sum_{k=0..inf}1/(1-y)^binomial(k, 3)*exp(-x^2/2*1/(1-y)^n)*x^k/k!.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 30 2020

A060484 Number of 6-block tricoverings of an n-set.

Original entry on oeis.org

1, 95, 3107, 75835, 1653771, 34384875, 700030507, 14116715435, 283432939691, 5679127043755, 113683003777707, 2274630646577835, 45502044971338411, 910133025632152235, 18203564201836161707, 364080180268471397035
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Programs

  • Mathematica
    With[{c=1/6!},Table[c(20^n-6*10^n-15*8^n+135*4^n-310*2^n+240),{n,3,20}]] (* or *) LinearRecurrence[{45,-720,5220,-17664,25920,-12800},{1,95,3107,75835,1653771,34384875},20] (* Harvey P. Dale, Jan 05 2017 *)
  • PARI
    a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240) \\ Andrew Howroyd, Dec 15 2018

Formula

a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240).
E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: -x^3*(800*x^3+448*x^2-50*x-1) / ((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(10*x-1)*(20*x-1)). - Colin Barker, Jan 12 2013
a(n) = 45*a(n-1)-720*a(n-2)+5220*a(n-3)-17664*a(n-4)+25920*a(n-5)-12800*a(n-6). - Wesley Ivan Hurt, Oct 18 2021

A060485 Number of 7-block tricoverings of an n-set.

Original entry on oeis.org

43, 4520, 244035, 10418070, 401861943, 14778678180, 530817413155, 18837147108890, 664260814445943, 23345018969140440, 818942064306004275, 28699514624047140510, 1005201938765467579543, 35196266296400319440300
Offset: 4

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Formula

a(n) = (1/7!)*(35^n - 7*20^n - 21*15^n + 42*10^n + 105*8^n + 105*7^n + 70*5^n - 945*4^n - 525*3^n + 2450*2^n - 1470).
E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..infinity}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: x^4*(27300000*x^7 +9288000*x^6 -17908650*x^5 +6008735*x^4 -796380*x^3 +38552*x^2 +210*x -43) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(7*x -1)*(8*x -1)*(10*x -1)*(15*x -1)*(20*x -1)*(35*x -1)). - Colin Barker, Jan 12 2013

A060091 Number of 4-block ordered bicoverings of an unlabeled n-set.

Original entry on oeis.org

0, 0, 0, 16, 63, 162, 341, 636, 1092, 1764, 2718, 4032, 5797, 8118, 11115, 14924, 19698, 25608, 32844, 41616, 52155, 64714, 79569, 97020, 117392, 141036, 168330, 199680, 235521, 276318, 322567, 374796, 433566, 499472, 573144, 655248, 746487
Offset: 0

Views

Author

Vladeta Jovovic, Feb 26 2001

Keywords

Crossrefs

Column k=4 of A060092.

Programs

  • PARI
    a(n) = if(n<1, 0, binomial(n + 5, 5) - 4*binomial(n + 2, 2) - 3*binomial(n + 1, 1) + 12*binomial(n, 0) - 6*binomial(n - 1, -1)) \\ Harry J. Smith, Jul 01 2009

Formula

a(n) = binomial(n + 5, 5) - 4*binomial(n + 2, 2) - 3*binomial(n + 1, 1) + 12*binomial(n, 0) - 6*binomial(n - 1, -1).
G.f.: - y^3*( - 24*y^2 - 16 + 33*y + 6*y^3)/( - 1 + y)^6.
E.g.f. for ordered k-block bicoverings of an unlabeled n-set is: exp( - x - x^2/2*y/(1 - y))*Sum_{k>=0} 1/(1 - y)^binomial(k, 2)*x^k/k!.
a(n) = (n+5)*(n-1)*(n-2)*(n^2+13*n+72)/120, n>0. - R. J. Mathar, Aug 15 2017
Showing 1-10 of 12 results. Next