A060090 Number of ordered bicoverings of an unlabeled n-set.
1, 0, 3, 23, 290, 4298, 79143, 1702923, 42299820, 1188147639, 37276597020, 1291633545897, 48995506718702, 2019395409175529, 89864601931874318, 4294295828157319651, 219321170795303112118, 11922219151375200468886
Offset: 0
Keywords
Examples
There are 23 ordered bicoverings of an unlabeled 3-set, 7 3-block bicoverings: 1 ( { 3 }, { 1, 2 }, { 1, 2, 3 } ) 2 ( { 3 }, { 1, 2, 3 }, { 1, 2 } ) 3 ( { 2, 3 }, { 1 }, { 1, 2, 3 } ) 4 ( { 2, 3 }, { 1, 3 }, { 1, 2 } ) 5 ( { 2, 3 }, { 1, 2, 3 }, { 1 } ) 6 ( { 1, 2, 3 }, { 3 }, { 1, 2 } ) 7 ( { 1, 2, 3 }, { 2, 3 }, { 1 } ) and 16 4-block bicoverings: 1 ( { 3 }, { 2 }, { 1 }, { 1, 2, 3 } ) 2 ( { 3 }, { 2 }, { 1, 3 }, { 1, 2 } ) 3 ( { 3 }, { 2 }, { 1, 2 }, { 1, 3 } ) 4 ( { 3 }, { 2 }, { 1, 2, 3 }, { 1 } ) 5 ( { 3 }, { 2, 3 }, { 1 }, { 1, 2 } ) 6 ( { 3 }, { 2, 3 }, { 1, 2 }, { 1 } ) 7 ( { 3 }, { 1, 2 }, { 2 }, { 1, 3 } ) 8 ( { 3 }, { 1, 2 }, { 2, 3 }, { 1 } ) 9 ( { 3 }, { 1, 2, 3 }, { 2 }, { 1 } ) 10 ( { 2, 3 }, { 3 }, { 1 }, { 1, 2 } ) 11 ( { 2, 3 }, { 3 }, { 1, 2 }, { 1 } ) 12 ( { 2, 3 }, { 1 }, { 3 }, { 1, 2 } ) 13 ( { 2, 3 }, { 1 }, { 1, 3 }, { 2 } ) 14 ( { 2, 3 }, { 1, 3 }, { 2 }, { 1 } ) 15 ( { 2, 3 }, { 1, 3 }, { 1 }, { 2 } ) 16 ( { 1, 2, 3 }, { 3 }, { 2 }, { 1 } )
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
PARI
seq(n)={my(m=3*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x - x^2*y/(2*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 2)*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020
Formula
E.g.f. for ordered k-block bicoverings of an unlabeled n-set is exp(-x-x^2/2*y/(1-y)) * Sum_{k>=0} 1/(1-y)^binomial(k,2)*x^k/k!.
Comments