cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A060090 Number of ordered bicoverings of an unlabeled n-set.

Original entry on oeis.org

1, 0, 3, 23, 290, 4298, 79143, 1702923, 42299820, 1188147639, 37276597020, 1291633545897, 48995506718702, 2019395409175529, 89864601931874318, 4294295828157319651, 219321170795303112118, 11922219151375200468886
Offset: 0

Views

Author

Vladeta Jovovic, Feb 25 2001

Keywords

Examples

			There are 23 ordered bicoverings of an unlabeled 3-set, 7 3-block bicoverings:
1 ( { 3 }, { 1, 2 }, { 1, 2, 3 } )
2 ( { 3 }, { 1, 2, 3 }, { 1, 2 } )
3 ( { 2, 3 }, { 1 }, { 1, 2, 3 } )
4 ( { 2, 3 }, { 1, 3 }, { 1, 2 } )
5 ( { 2, 3 }, { 1, 2, 3 }, { 1 } )
6 ( { 1, 2, 3 }, { 3 }, { 1, 2 } )
7 ( { 1, 2, 3 }, { 2, 3 }, { 1 } )
and 16 4-block bicoverings:
1 ( { 3 }, { 2 }, { 1 }, { 1, 2, 3 } )
2 ( { 3 }, { 2 }, { 1, 3 }, { 1, 2 } )
3 ( { 3 }, { 2 }, { 1, 2 }, { 1, 3 } )
4 ( { 3 }, { 2 }, { 1, 2, 3 }, { 1 } )
5 ( { 3 }, { 2, 3 }, { 1 }, { 1, 2 } )
6 ( { 3 }, { 2, 3 }, { 1, 2 }, { 1 } )
7 ( { 3 }, { 1, 2 }, { 2 }, { 1, 3 } )
8 ( { 3 }, { 1, 2 }, { 2, 3 }, { 1 } )
9 ( { 3 }, { 1, 2, 3 }, { 2 }, { 1 } )
10 ( { 2, 3 }, { 3 }, { 1 }, { 1, 2 } )
11 ( { 2, 3 }, { 3 }, { 1, 2 }, { 1 } )
12 ( { 2, 3 }, { 1 }, { 3 }, { 1, 2 } )
13 ( { 2, 3 }, { 1 }, { 1, 3 }, { 2 } )
14 ( { 2, 3 }, { 1, 3 }, { 2 }, { 1 } )
15 ( { 2, 3 }, { 1, 3 }, { 1 }, { 2 } )
16 ( { 1, 2, 3 }, { 3 }, { 2 }, { 1 } )
		

Crossrefs

Row n=2 of A331571.
Row sums of A060092.

Programs

  • PARI
    seq(n)={my(m=3*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x - x^2*y/(2*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 2)*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for ordered k-block bicoverings of an unlabeled n-set is exp(-x-x^2/2*y/(1-y)) * Sum_{k>=0} 1/(1-y)^binomial(k,2)*x^k/k!.

A060052 Triangle read by rows: T(n,k) gives number of r-bicoverings of an n-set with k blocks, n >= 2, k = 3..n+floor(n/2).

Original entry on oeis.org

1, 1, 4, 0, 15, 25, 3, 0, 30, 222, 226, 40, 0, 30, 1230, 3670, 2706, 535, 15, 0, 0, 5040, 39900, 69450, 40405, 8141, 420, 0, 0, 15120, 345240, 1254960, 1498035, 722275, 142877, 9730, 105, 0, 0, 30240, 2492280, 18587520, 40701780, 36450820, 15031204, 2871240, 226828, 5040
Offset: 2

Views

Author

Vladeta Jovovic, Feb 15 2001

Keywords

Comments

A bicovering is r-bicovering if intersection of every two blocks contains at most one element.

Examples

			Triangle starts:
[1],
[1, 4],
[0, 15, 25, 3],
[0, 30, 222, 226, 40],
[0, 30, 1230, 3670, 2706, 535, 15],
[0, 0, 5040, 39900, 69450, 40405, 8141, 420],
[0, 0, 15120, 345240, 1254960, 1498035, 722275, 142877, 9730, 105],
[0, 0, 30240, 2492280, 18587520, 40701780, 36450820, 15031204, 2871240, 226828, 5040],
...
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Row sums are A060053.
Column sums are A060051.

Programs

  • PARI
    \\ returns k-th column as vector.
    C(k)=if(k<3, [], Vecrev(serlaplace(polcoef(exp(-x-1/2*x^2*y + O(x*x^k))*sum(i=0, 3*k\2, (1+y)^binomial(i, 2)*x^i/i!), k))/y)) \\ Andrew Howroyd, Jan 30 2020
    
  • PARI
    T(n)={my(m=(3*n\2), y='y + O('y^(n+1))); my(g=exp(-x-1/2*x^2*y + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 2)*x^k/k!)); Mat([Col(serlaplace(p), -n) | p<-Vec(g)[2..m+1]])}
    { my(A=T(8)); for(n=2, matsize(A)[1], print(A[n, 3..3*n\2])) } \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f.: A(x, y) = exp(-x-1/2*x^2*y)*Sum_{i>=0} (1+y)^binomial(i, 2)*x^i/i!.
T(n, k) = (n!/k!) * A276640(k, n). - David Pasino, Sep 22 2016
T(n,k) = 0 for n > binomial(k,2). - Andrew Howroyd, Jan 30 2020

Extensions

Zeros inserted into data by Andrew Howroyd, Jan 30 2020

A060492 Triangle T(n,k) of k-block ordered tricoverings of an unlabeled n-set (n >= 3, k = 4..2n).

Original entry on oeis.org

4, 60, 120, 13, 375, 3030, 9030, 5040, 28, 1392, 24552, 207900, 838320, 1345680, 362880, 50, 4020, 130740, 2208430, 20334720, 101752560, 257065200, 261122400, 46569600, 80, 9960, 551640, 16365410, 274814760, 2709457128, 15812198640
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.
All columns are polynomials of order binomial(k, 3). - Andrew Howroyd, Jan 30 2020

Examples

			Triangle begins:
  [4, 60, 120],
  [13, 375, 3030, 9030, 5040],
  [28, 1392, 24552, 207900, 838320, 1345680, 362880],
  [50, 4020, 130740, 2208430, 20334720, 101752560, 257065200, 261122400, 46569600], [80, 9960, 551640, 16365410, 274814760, 2709457128, 15812198640, 52897521600, 91945022400, 64778313600, 8043235200],
   ...
There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060491).
		

Crossrefs

Row sums are A060491.
Columns k=4..6 are A060488, A060489, A060490.

Programs

  • PARI
    \\ gives g.f. of k-th column.
    ColGf(k) = k!*polcoef(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^k) )*sum(j=0, k, 1/(1-y)^binomial(j, 3)*exp((-x^2/2)/(1-y)^j + O(x*x^k))*x^j/j!), k) \\ Andrew Howroyd, Jan 30 2020
    
  • PARI
    T(n)={my(m=2*n, y='y + O('y^(n+1))); my(g=serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))); Mat([Col(p/y^3, -n) | p<-Vec(g)[2..m+1]])}
    { my(A=T(8)); for(n=3, matsize(A)[1], print(A[n, 4..2*n])) } \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp(-x+x^2/2+x^3/3*y/(1-y))*Sum_{k=0..inf}1/(1-y)^binomial(k, 3)*exp(-x^2/2*1/(1-y)^n)*x^k/k!.

A059530 Triangle T(n,k) of k-block T_0-tricoverings of an n-set, n >= 3, k = 0..2*n.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 39, 89, 43, 3, 0, 0, 0, 0, 0, 252, 2192, 4090, 2435, 445, 12, 0, 0, 0, 0, 0, 1260, 37080, 179890, 289170, 188540, 50645, 4710, 70, 0, 0, 0, 0, 0, 5040, 536760, 6052730, 20660055, 29432319, 19826737, 6481160, 964495, 52430
Offset: 3

Views

Author

Vladeta Jovovic, Feb 22 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering. A covering of a set is a T_0-covering if for every two distinct elements of the set there exists a block of the covering containing one but not the other element.

Examples

			Triangle begins:
  [0, 0, 0, 0, 1, 3, 1],
  [0, 0, 0, 0, 1, 39, 89, 43, 3],
  [0, 0, 0, 0, 0, 252, 2192, 4090, 2435, 445, 12],
  [0, 0, 0, 0, 0, 1260, 37080, 179890, 289170, 188540, 50645, 4710, 70],
   ...
There are 5 = 1 + 3 + 1 T_0-tricoverings of a 3-set and 175 = 1 + 39 + 89 + 43 + 3 T_0-tricoverings of a 4-set, cf. A060070.
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Column sums are A060069.
Row sums are A060070.

Programs

  • PARI
    \\ gets k-th column as vector
    C(k)=if(k<4, [], Vecrev(serlaplace(polcoef(exp(-x + x^2/2 + x^3*y/3 + O(x*x^k))*sum(i=0, 2*k, (1+y)^binomial(i, 3)*exp(-x^2*(1+y)^i/2 + O(x*x^k))*x^i/i!), k))/y)) \\ Andrew Howroyd, Jan 30 2020
    
  • PARI
    T(n)={my(m=2*n, y='y + O('y^(n+1))); my(g=exp(-x + x^2/2 + x^3*y/3 + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 3)*exp(-x^2*(1+y)^k/2 + O(x*x^m))*x^k/k!)); Mat([Col(serlaplace(p), -n) | p<-Vec(g)[2..m+1]]);}
    { my(A=T(8)); for(n=3, matsize(A)[1], print(concat([0], A[n, 1..2*n]))) } \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for k-block T_0-tricoverings of an n-set is exp(-x+1/2*x^2+1/3*x^3*y)*Sum_{i=0..inf}(1+y)^binomial(i, 3)*exp(-1/2*x^2*(1+y)^i)*x^i/i!.
T(n,k) = 0 for n > binomial(k, 3). - Andrew Howroyd, Jan 30 2020

A060095 Number of 7-block ordered bicoverings of an unlabeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 0, 1680, 27342, 208302, 1099602, 4636072, 16734438, 53810484, 158053119, 431305959, 1106791524, 2694914978, 6269281305, 14010246285, 30208869495, 63074014815, 127909521180, 252581107180, 486738385140
Offset: 0

Views

Author

Vladeta Jovovic, Feb 26 2001

Keywords

Crossrefs

Column k=7 of A060092.

Programs

  • PARI
    a(n) = if(n<1, 0, binomial(n + 20, n) - 7*binomial(n + 14, 14) - 21*binomial(n + 10, 10) + 42*binomial(n + 9, 9) + 105*binomial(n + 6, 6) - 140*binomial(n + 5, 5) + 105*binomial(n + 4, 4) - 420*binomial(n + 3, 3) + 35*binomial(n + 2, 2) + 1050*binomial(n + 1, 1) - 1050*binomial(n, 0) + 300*binomial(n - 1, - 1)) \\ Harry J. Smith, Jul 01 2009

Formula

a(n) = binomial(n+20, n) - 7*binomial(n+14, 14) - 21*binomial(n+10, 10) + 42*binomial(n+9, 9) + 105*binomial(n+6, 6) - 140*binomial(n+5, 5) + 105*binomial(n+4, 4) - 420*binomial(n+3, 3) + 35*binomial(n+2, 2) + 1050*binomial(n+1, 1) - 1050*binomial(n, 0) + 300*binomial(n-1, -1).
G.f.: y^5*(-1680 - 7005635*y^7 + 5039622*y^6 - 2707236*y^5 + 1022210*y^4 - 232680*y^3 + 13080*y^2 + 7938*y - 5250*y^15 + 300*y^16 + 43050*y^14 - 6227505*y^9 + 4042780*y^10 + 7485450*y^8 - 219485*y^13 + 778260*y^12 - 2033220*y^11)/(-1 + y)^21.
E.g.f. for k-block ordered bicoverings of an unlabeled n-set is exp(-x - x^2/2*y/(1 - y))*Sum_{k>=0} 1/(1 - y)^binomial(k, 2)*x^k/k!.

A060491 Number of ordered tricoverings of an unlabeled n-set.

Original entry on oeis.org

1, 0, 0, 184, 17488, 2780752, 689187720, 236477490418, 107317805999204, 62318195302890305, 45081693413563797127, 39762626850034005271588, 42009504510315968282400843, 52381340312720286113688037624, 76118747309505733406576769607755
Offset: 0

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Examples

			There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060492).
		

Crossrefs

Programs

  • PARI
    seq(n)={my(m=2*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp(-x+x^2/2+x^3/3*y/(1-y))*Sum_{k=0..inf}1/(1-y)^binomial(k, 3)*exp(-x^2/2*1/(1-y)^n)*x^k/k!.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 30 2020

A060091 Number of 4-block ordered bicoverings of an unlabeled n-set.

Original entry on oeis.org

0, 0, 0, 16, 63, 162, 341, 636, 1092, 1764, 2718, 4032, 5797, 8118, 11115, 14924, 19698, 25608, 32844, 41616, 52155, 64714, 79569, 97020, 117392, 141036, 168330, 199680, 235521, 276318, 322567, 374796, 433566, 499472, 573144, 655248, 746487
Offset: 0

Views

Author

Vladeta Jovovic, Feb 26 2001

Keywords

Crossrefs

Column k=4 of A060092.

Programs

  • PARI
    a(n) = if(n<1, 0, binomial(n + 5, 5) - 4*binomial(n + 2, 2) - 3*binomial(n + 1, 1) + 12*binomial(n, 0) - 6*binomial(n - 1, -1)) \\ Harry J. Smith, Jul 01 2009

Formula

a(n) = binomial(n + 5, 5) - 4*binomial(n + 2, 2) - 3*binomial(n + 1, 1) + 12*binomial(n, 0) - 6*binomial(n - 1, -1).
G.f.: - y^3*( - 24*y^2 - 16 + 33*y + 6*y^3)/( - 1 + y)^6.
E.g.f. for ordered k-block bicoverings of an unlabeled n-set is: exp( - x - x^2/2*y/(1 - y))*Sum_{k>=0} 1/(1 - y)^binomial(k, 2)*x^k/k!.
a(n) = (n+5)*(n-1)*(n-2)*(n^2+13*n+72)/120, n>0. - R. J. Mathar, Aug 15 2017

A060093 Number of 5-block ordered bicoverings of an unlabeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 125, 722, 2565, 7180, 17335, 37750, 76093, 144340, 260590, 451440, 755040, 1224964, 1935050, 2985380, 4509590, 6683720, 9736835, 13963670, 19739575, 27538060, 37951265, 51713706, 69729675, 93104700, 123181500
Offset: 0

Views

Author

Vladeta Jovovic, Feb 26 2001

Keywords

Crossrefs

Column k=5 of A060092.

Programs

  • PARI
    a(n) = if(n<1, 0, binomial(n + 9, 9) - 5*binomial(n + 5, 5) - 10*binomial(n + 3, 3) + 20*binomial(n + 2, 2) + 30*binomial(n + 1, 1) - 60*binomial(n, 0) + 24*binomial(n - 1, -1)) \\ Harry J. Smith, Jul 01 2009

Formula

a(n) = binomial(n+9, 9) - 5*binomial(n+5, 5) - 10*binomial(n+3, 3) + 20*binomial(n+2, 2) + 30*binomial(n+1, 1) - 60*binomial(n, 0) + 24*binomial(n-1, -1).
G.f.: y^4*(-528*y + 125 + 970*y^2 - 980*y^3 + 570*y^4 - 180*y^5 + 24*y^6)/(-1 + y)^10.
E.g.f. for k-block ordered bicoverings of an unlabeled n-set is exp(-x - x^2/2*y/(1 - y))*Sum_{k>=0} 1/(1 - y)^binomial(k, 2)*x^k/k!.
a(n) = (n-1) *(n-2) *(n-3) *(n^6 + 51*n^5 + 1165*n^4 + 15885*n^3 + 130954*n^2 + 660504*n + 1451520)/ 362880, n > 0. - R. J. Mathar, Aug 10 2017

A060094 Number of 6-block ordered bicoverings of an unlabeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 90, 1716, 11350, 49860, 173745, 519345, 1389078, 3411060, 7821950, 16949910, 35013240, 69404416, 132703770, 245767890, 442372300, 776064960, 1330117230, 2231754820, 3672227850, 5934754020, 9432962515, 14763202395
Offset: 0

Views

Author

Vladeta Jovovic, Feb 26 2001

Keywords

Crossrefs

Column k=6 of A060092.

Programs

  • PARI
    a(n) = if(n<1, 0, binomial(n + 14, n) - 6*binomial(n + 9, 9) - 15*binomial(n + 6, 6) + 30*binomial(n + 5, 5) + 60*binomial(n + 3, 3) - 50*binomial(n + 2, 2) - 180*binomial(n + 1, 1) + 240*binomial(n, 0) - 80*binomial(n - 1, -1)) \\ Harry J. Smith, Jul 01 2009

Formula

a(n) = binomial(n+14, n) - 6*binomial(n+9, 9) - 15*binomial(n+6, 6) + 30*binomial(n+5, 5) + 60*binomial(n+3, 3) - 50*binomial(n+2, 2) - 180*binomial(n+1, 1) + 240*binomial(n, 0) - 80*binomial(n-1, -1).
G.f.: -y^4*(366*y - 16950*y^8 + 36420*y^7 - 54120*y^6 + 56290*y^5 - 40335*y^4 + 18840*y^3 - 4940*y^2 - 960*y^10 + 80*y^11 + 5220*y^9 + 90)/(-1 + y)^15.
E.g.f. for k-block ordered bicoverings of an unlabeled n-set is exp(-x - x^2/2*y/(1 - y))*Sum_{k>=0} 1/(1 - y)^binomial(k, 2)*x^k/k!.
Showing 1-9 of 9 results.