cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A060070 Number of T_0-tricoverings of an n-set.

Original entry on oeis.org

1, 0, 0, 5, 175, 9426, 751365, 84012191, 12644839585, 2479642897109, 617049443550205, 190678639438170502, 71860665148118443795, 32527628234581386962713, 17454341903042193018433239, 10978059489008346809004564072, 8013452442154510131205645967978
Offset: 0

Views

Author

Vladeta Jovovic, Feb 21 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering. A covering of a set is a T_0-covering if for every two distinct elements of the set there exists a block of the covering containing one but not the other element.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Row n=3 of A331039.
Row sums of A059530.

Programs

  • PARI
    seq(n)={my(m=2*n, y='y + O('y^(n+1))); Vec(serlaplace(subst(Pol(exp(-x + x^2/2 + x^3*y/3 + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 3)*exp(-x^2*(1+y)^k/2 + O(x*x^m))*x^k/k!)), x, 1)))} \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for k-block T_0-tricoverings of an n-set is exp(-x+1/2*x^2+1/3*x^3*y)*Sum_{i=0..inf}(1+y)^binomial(i, 3)*exp(-1/2*x^2*(1+y)^i)*x^i/i!.
a(n) = Sum_{k=0..n} Stirling1(n, k)*A060486(k). - Andrew Howroyd, Jan 08 2020

Extensions

Terms a(15) and beyond from Andrew Howroyd, Jan 08 2020

A060052 Triangle read by rows: T(n,k) gives number of r-bicoverings of an n-set with k blocks, n >= 2, k = 3..n+floor(n/2).

Original entry on oeis.org

1, 1, 4, 0, 15, 25, 3, 0, 30, 222, 226, 40, 0, 30, 1230, 3670, 2706, 535, 15, 0, 0, 5040, 39900, 69450, 40405, 8141, 420, 0, 0, 15120, 345240, 1254960, 1498035, 722275, 142877, 9730, 105, 0, 0, 30240, 2492280, 18587520, 40701780, 36450820, 15031204, 2871240, 226828, 5040
Offset: 2

Views

Author

Vladeta Jovovic, Feb 15 2001

Keywords

Comments

A bicovering is r-bicovering if intersection of every two blocks contains at most one element.

Examples

			Triangle starts:
[1],
[1, 4],
[0, 15, 25, 3],
[0, 30, 222, 226, 40],
[0, 30, 1230, 3670, 2706, 535, 15],
[0, 0, 5040, 39900, 69450, 40405, 8141, 420],
[0, 0, 15120, 345240, 1254960, 1498035, 722275, 142877, 9730, 105],
[0, 0, 30240, 2492280, 18587520, 40701780, 36450820, 15031204, 2871240, 226828, 5040],
...
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Row sums are A060053.
Column sums are A060051.

Programs

  • PARI
    \\ returns k-th column as vector.
    C(k)=if(k<3, [], Vecrev(serlaplace(polcoef(exp(-x-1/2*x^2*y + O(x*x^k))*sum(i=0, 3*k\2, (1+y)^binomial(i, 2)*x^i/i!), k))/y)) \\ Andrew Howroyd, Jan 30 2020
    
  • PARI
    T(n)={my(m=(3*n\2), y='y + O('y^(n+1))); my(g=exp(-x-1/2*x^2*y + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 2)*x^k/k!)); Mat([Col(serlaplace(p), -n) | p<-Vec(g)[2..m+1]])}
    { my(A=T(8)); for(n=2, matsize(A)[1], print(A[n, 3..3*n\2])) } \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f.: A(x, y) = exp(-x-1/2*x^2*y)*Sum_{i>=0} (1+y)^binomial(i, 2)*x^i/i!.
T(n, k) = (n!/k!) * A276640(k, n). - David Pasino, Sep 22 2016
T(n,k) = 0 for n > binomial(k,2). - Andrew Howroyd, Jan 30 2020

Extensions

Zeros inserted into data by Andrew Howroyd, Jan 30 2020

A060069 Number of n-block T_0-tricoverings.

Original entry on oeis.org

1, 0, 0, 0, 2, 82194, 9185157387760082, 5573096894405951375691132323893805593, 47933892393105239218152796441416602126447041437452022947424986090407628
Offset: 0

Views

Author

Vladeta Jovovic, Feb 19 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering; A covering of a set is a T_0-covering if for every two distinct elements of the set there exists a block of the covering containing one but not the other element.

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Column sums of A059530.

Formula

E.g.f. for n-block T_0-tricoverings of a k-set is exp(-x+1/2*x^2+1/3*x^3*y)*Sum_{i=0..inf} (1+y)^binomial(i, 3)*exp(-1/2*x^2*(1+y)^i)*x^i/i!.

A060492 Triangle T(n,k) of k-block ordered tricoverings of an unlabeled n-set (n >= 3, k = 4..2n).

Original entry on oeis.org

4, 60, 120, 13, 375, 3030, 9030, 5040, 28, 1392, 24552, 207900, 838320, 1345680, 362880, 50, 4020, 130740, 2208430, 20334720, 101752560, 257065200, 261122400, 46569600, 80, 9960, 551640, 16365410, 274814760, 2709457128, 15812198640
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.
All columns are polynomials of order binomial(k, 3). - Andrew Howroyd, Jan 30 2020

Examples

			Triangle begins:
  [4, 60, 120],
  [13, 375, 3030, 9030, 5040],
  [28, 1392, 24552, 207900, 838320, 1345680, 362880],
  [50, 4020, 130740, 2208430, 20334720, 101752560, 257065200, 261122400, 46569600], [80, 9960, 551640, 16365410, 274814760, 2709457128, 15812198640, 52897521600, 91945022400, 64778313600, 8043235200],
   ...
There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060491).
		

Crossrefs

Row sums are A060491.
Columns k=4..6 are A060488, A060489, A060490.

Programs

  • PARI
    \\ gives g.f. of k-th column.
    ColGf(k) = k!*polcoef(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^k) )*sum(j=0, k, 1/(1-y)^binomial(j, 3)*exp((-x^2/2)/(1-y)^j + O(x*x^k))*x^j/j!), k) \\ Andrew Howroyd, Jan 30 2020
    
  • PARI
    T(n)={my(m=2*n, y='y + O('y^(n+1))); my(g=serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))); Mat([Col(p/y^3, -n) | p<-Vec(g)[2..m+1]])}
    { my(A=T(8)); for(n=3, matsize(A)[1], print(A[n, 4..2*n])) } \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp(-x+x^2/2+x^3/3*y/(1-y))*Sum_{k=0..inf}1/(1-y)^binomial(k, 3)*exp(-x^2/2*1/(1-y)^n)*x^k/k!.

A094631 Number of n-block 3-uniform T_0-covers.

Original entry on oeis.org

1, 0, 0, 184, 16936, 2711904, 675457000, 232383728378, 105676839790294, 61466235823794521, 44524673319233300950, 39314601406037457009543, 41574584860907056125473119, 51879840704758774687928224799, 75441055286834286248687362255451, 126462548502721304612260672370098185
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 15 2004

Keywords

Comments

a(n) is the number of binary matrices with n distinct columns and any number of distinct nonzero rows with 3 ones in every column and columns in decreasing lexicographic order. - Andrew Howroyd, Jan 25 2020

Crossrefs

Row n=3 of A331569.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 25 2020

A094630 Number of 3-uniform T_0-covers on n vertices.

Original entry on oeis.org

1, 0, 0, 0, 5, 893, 1039947, 34351783511, 72057317345649377, 19342812465159881755696499, 1329227995591486918148744122456237749, 46768052394574271874021714673583968385714779097997, 1684996666696914425950059618212919561731019777110516294609942096153
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 15 2004

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={Vec(serlaplace(exp(-x + x^2/2 + x^3/3 + O(x*x^n))*sum(k=0, n, 2^binomial(k, 3)*exp(-2^(k-1)*x^2 + O(x*x^(n-k)))*x^k/k!)))} \\ Andrew Howroyd, Jan 29 2020

Formula

E.g.f.: exp(-x+x^2/2+x^3/3)*Sum_{n>=0} 2^binomial(n, 3)*exp(-2^(n-1)*x^2)*x^n/n!.
Showing 1-6 of 6 results.