cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A060052 Triangle read by rows: T(n,k) gives number of r-bicoverings of an n-set with k blocks, n >= 2, k = 3..n+floor(n/2).

Original entry on oeis.org

1, 1, 4, 0, 15, 25, 3, 0, 30, 222, 226, 40, 0, 30, 1230, 3670, 2706, 535, 15, 0, 0, 5040, 39900, 69450, 40405, 8141, 420, 0, 0, 15120, 345240, 1254960, 1498035, 722275, 142877, 9730, 105, 0, 0, 30240, 2492280, 18587520, 40701780, 36450820, 15031204, 2871240, 226828, 5040
Offset: 2

Views

Author

Vladeta Jovovic, Feb 15 2001

Keywords

Comments

A bicovering is r-bicovering if intersection of every two blocks contains at most one element.

Examples

			Triangle starts:
[1],
[1, 4],
[0, 15, 25, 3],
[0, 30, 222, 226, 40],
[0, 30, 1230, 3670, 2706, 535, 15],
[0, 0, 5040, 39900, 69450, 40405, 8141, 420],
[0, 0, 15120, 345240, 1254960, 1498035, 722275, 142877, 9730, 105],
[0, 0, 30240, 2492280, 18587520, 40701780, 36450820, 15031204, 2871240, 226828, 5040],
...
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Row sums are A060053.
Column sums are A060051.

Programs

  • PARI
    \\ returns k-th column as vector.
    C(k)=if(k<3, [], Vecrev(serlaplace(polcoef(exp(-x-1/2*x^2*y + O(x*x^k))*sum(i=0, 3*k\2, (1+y)^binomial(i, 2)*x^i/i!), k))/y)) \\ Andrew Howroyd, Jan 30 2020
    
  • PARI
    T(n)={my(m=(3*n\2), y='y + O('y^(n+1))); my(g=exp(-x-1/2*x^2*y + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 2)*x^k/k!)); Mat([Col(serlaplace(p), -n) | p<-Vec(g)[2..m+1]])}
    { my(A=T(8)); for(n=2, matsize(A)[1], print(A[n, 3..3*n\2])) } \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f.: A(x, y) = exp(-x-1/2*x^2*y)*Sum_{i>=0} (1+y)^binomial(i, 2)*x^i/i!.
T(n, k) = (n!/k!) * A276640(k, n). - David Pasino, Sep 22 2016
T(n,k) = 0 for n > binomial(k,2). - Andrew Howroyd, Jan 30 2020

Extensions

Zeros inserted into data by Andrew Howroyd, Jan 30 2020

A060092 Triangle T(n,k) of k-block ordered bicoverings of an unlabeled n-set, n >= 2, k = 3..n+floor(n/2).

Original entry on oeis.org

3, 7, 16, 12, 63, 125, 90, 18, 162, 722, 1716, 1680, 25, 341, 2565, 11350, 27342, 29960, 7560, 33, 636, 7180, 49860, 208302, 503000, 631512, 302400, 42, 1092, 17335, 173745, 1099602, 4389875, 10762299, 14975730, 9632700, 1247400
Offset: 2

Views

Author

Vladeta Jovovic, Feb 26 2001

Keywords

Comments

All columns are polynomials of order binomial(k, 2). - Andrew Howroyd, Jan 30 2020

Examples

			[3],
[7, 16],
[12, 63, 125, 90],
[18, 162, 722, 1716, 1680],
[25, 341, 2565, 11350, 27342, 29960, 7560],
[33, 636, 7180, 49860, 208302, 503000, 631512, 302400],
[42, 1092, 17335, 173745, 1099602, 4389875, 10762299, 14975730, 9632700, 1247400], ...
There are 23=7+16 ordered bicoverings of an unlabeled 3-set: 7 3-block bicoverings and 16 4-block bicoverings, cf. A060090.
		

Crossrefs

Row sums are A060090.
Columns k=3..7 are A055998(n-1), A060091, A060093, A060094, A060095.

Programs

  • PARI
    \\ gives g.f. of k-th column.
    ColGf(k) = k!*polcoef(exp(-x - x^2*y/(2*(1-y)) + O(x*x^k))*sum(j=0, k, 1/(1-y)^binomial(j, 2)*x^j/j!), k) \\ Andrew Howroyd, Jan 30 2020
    
  • PARI
    T(n)={my(m=(3*n\2), y='y + O('y^(n+1))); my(g=serlaplace(exp(-x - x^2*y/(2*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 2)*x^k/k!))); Mat([Col(p/y^2, -n) | p<-Vec(g)[2..m+1]])}
    { my(A=T(8)); for(n=2, matsize(A)[1], print(A[n, 3..3*n\2])) } \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for k-block ordered bicoverings of an unlabeled n-set is exp(-x-x^2/2*y/(1-y))*Sum_{k=0..inf} 1/(1-y)^binomial(k, 2)*x^k/k!.

A059530 Triangle T(n,k) of k-block T_0-tricoverings of an n-set, n >= 3, k = 0..2*n.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 39, 89, 43, 3, 0, 0, 0, 0, 0, 252, 2192, 4090, 2435, 445, 12, 0, 0, 0, 0, 0, 1260, 37080, 179890, 289170, 188540, 50645, 4710, 70, 0, 0, 0, 0, 0, 5040, 536760, 6052730, 20660055, 29432319, 19826737, 6481160, 964495, 52430
Offset: 3

Views

Author

Vladeta Jovovic, Feb 22 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering. A covering of a set is a T_0-covering if for every two distinct elements of the set there exists a block of the covering containing one but not the other element.

Examples

			Triangle begins:
  [0, 0, 0, 0, 1, 3, 1],
  [0, 0, 0, 0, 1, 39, 89, 43, 3],
  [0, 0, 0, 0, 0, 252, 2192, 4090, 2435, 445, 12],
  [0, 0, 0, 0, 0, 1260, 37080, 179890, 289170, 188540, 50645, 4710, 70],
   ...
There are 5 = 1 + 3 + 1 T_0-tricoverings of a 3-set and 175 = 1 + 39 + 89 + 43 + 3 T_0-tricoverings of a 4-set, cf. A060070.
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.

Crossrefs

Column sums are A060069.
Row sums are A060070.

Programs

  • PARI
    \\ gets k-th column as vector
    C(k)=if(k<4, [], Vecrev(serlaplace(polcoef(exp(-x + x^2/2 + x^3*y/3 + O(x*x^k))*sum(i=0, 2*k, (1+y)^binomial(i, 3)*exp(-x^2*(1+y)^i/2 + O(x*x^k))*x^i/i!), k))/y)) \\ Andrew Howroyd, Jan 30 2020
    
  • PARI
    T(n)={my(m=2*n, y='y + O('y^(n+1))); my(g=exp(-x + x^2/2 + x^3*y/3 + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 3)*exp(-x^2*(1+y)^k/2 + O(x*x^m))*x^k/k!)); Mat([Col(serlaplace(p), -n) | p<-Vec(g)[2..m+1]]);}
    { my(A=T(8)); for(n=3, matsize(A)[1], print(concat([0], A[n, 1..2*n]))) } \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for k-block T_0-tricoverings of an n-set is exp(-x+1/2*x^2+1/3*x^3*y)*Sum_{i=0..inf}(1+y)^binomial(i, 3)*exp(-1/2*x^2*(1+y)^i)*x^i/i!.
T(n,k) = 0 for n > binomial(k, 3). - Andrew Howroyd, Jan 30 2020

A060488 Number of 4-block ordered tricoverings of an unlabeled n-set.

Original entry on oeis.org

4, 13, 28, 50, 80, 119, 168, 228, 300, 385, 484, 598, 728, 875, 1040, 1224, 1428, 1653, 1900, 2170, 2464, 2783, 3128, 3500, 3900, 4329, 4788, 5278, 5800, 6355, 6944, 7568, 8228, 8925, 9660, 10434, 11248, 12103, 13000, 13940, 14924, 15953, 17028, 18150, 19320
Offset: 3

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.
If Y is a 4-subset of an n-set X then, for n>=6, a(n-3) is the number of 3-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 08 2007
Also the number of balls in a triangular pyramid of which all balls located on the edges have been removed such that the remaining pyramid's edges each consist of two adjacent balls. The layers of pyramids of this form start (from the top) 3, 7, 12, 18, 25, 33,... (A055998) with one smaller additional layer 1, 3, 6, 10, 15, 21,... (A000217) at the bottom. Thus, a(n) = A000217(n) + Sum_{k=1..n} A055998(k). Example: a(4) = (3+7+12+18)+10 = 50. - K. G. Stier, Dec 12 2012

Crossrefs

Essentially the same as A026054. - Vladeta Jovovic, Jun 15 2006
Column k=4 of A060492.
Fourth column (m=3) of (1, 4)-Pascal triangle A095666.

Programs

Formula

a(n) = binomial(n+3, 3) - 6*binomial(n+1, 1) + 8*binomial(n, 0) - 3*binomial(n-1, -1).
G.f.: -y^3*(-4+3*y)/(-1+y)^4.
E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp(-x+x^2/2+x^3/3*y/(1-y)) * sum(k>=0, 1/(1-y)^binomial(k, 3)*exp(-x^2/2*1/(1-y)^n)*x^k/k! ).
a(n) = (n+9)*binomial(n-1, 2)/3.
a(n) = (n-2)*(n-1)*(n+9)/6. - Zak Seidov, Jun 15 2006
a(3)=4, a(4)=13, a(5)=28, a(6)=50, a(n) = 4*a(n-1)-6*a(n-2)+ 4*a(n-3)- a(n-4). - Harvey P. Dale, Jul 21 2012

A060491 Number of ordered tricoverings of an unlabeled n-set.

Original entry on oeis.org

1, 0, 0, 184, 17488, 2780752, 689187720, 236477490418, 107317805999204, 62318195302890305, 45081693413563797127, 39762626850034005271588, 42009504510315968282400843, 52381340312720286113688037624, 76118747309505733406576769607755
Offset: 0

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Examples

			There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060492).
		

Crossrefs

Programs

  • PARI
    seq(n)={my(m=2*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp(-x+x^2/2+x^3/3*y/(1-y))*Sum_{k=0..inf}1/(1-y)^binomial(k, 3)*exp(-x^2/2*1/(1-y)^n)*x^k/k!.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 30 2020

A060489 Number of 5-block ordered tricoverings of an unlabeled n-set.

Original entry on oeis.org

0, 0, 60, 375, 1392, 4020, 9960, 22200, 45730, 88543, 163000, 287650, 489610, 807625, 1295944, 2029165, 3108220, 4667690, 6884660, 9989345, 14277740, 20126570, 28010840, 38524310, 52403246, 70553825, 94083600, 124337460, 162938550, 211834647, 273350520, 350246835
Offset: 1

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Column k=5 of A060492.

Formula

a(n) = binomial(n+9, 9) - 15*binomial(n+3, 3) + 45*binomial(n+1, 1) - 40*binomial(n, 0) + 9*binomial(n-1, -1).
G.f.: y^3*(-225*y^3 + 60 - 225*y + 342*y^2 + 90*y^5 - 50*y^6 + 9*y^7)/(-1+y)^10.
E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp(-x+x^2/2+x^3/3*y/(1-y))*Sum_{k>=0} 1/(1-y)^binomial(k, 3)*exp(-x^2/2*1/(1-y)^n)*x^k/k!.

Extensions

a(1)=a(2)=0 prepended and terms a(30) and beyond from Andrew Howroyd, Jan 30 2020

A060490 Number of 6-block ordered tricoverings of an unlabeled n-set.

Original entry on oeis.org

0, 0, 120, 3030, 24552, 130740, 551640, 1997415, 6470420, 19219462, 53187840, 138658760, 343297780, 812249250, 1845669776, 4044119530, 8573706300, 17637474350, 35294157340, 68850086745, 131179071560, 244518601660, 446576824800, 800201972990, 1408466719120
Offset: 1

Views

Author

Vladeta Jovovic, Mar 20 2001

Keywords

Comments

A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

Crossrefs

Column k=6 of A060492.

Formula

a(n) = binomial(n + 19, 19) - 6*binomial(n + 9, 9) - 15*binomial(n + 7, 7) + 135*binomial(n + 3, 3) - 310*binomial(n + 1, 1) + 240*binomial(n, 0) - 45*binomial(n - 1, -1).
G.f.: -y^3*( -78600*y^3 + 271080*y^4 - 120 - 630*y + 13248*y^2 - 635805*y^5 + 4300*y^15 - 15840*y^14 + 32760*y^13 - 18240*y^12 - 114120*y^11 + 442800*y^10 - 915315*y^9 - 1371804*y^7 + 1305540*y^8 + 1081360*y^6 + 45*y^17 - 660*y^16)/(-1 + y)^20.
E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp( -x + x^2/2 + x^3/3*y/(1 - y))*Sum_{k>=0} 1/(1 - y)^binomial(k, 3)*exp( -x^2/2*1/(1 - y)^n)*x^k/k!.

Extensions

a(1)=a(2)=0 prepended and terms a(23) and beyond from Andrew Howroyd, Jan 30 2020
Showing 1-7 of 7 results.