A060052
Triangle read by rows: T(n,k) gives number of r-bicoverings of an n-set with k blocks, n >= 2, k = 3..n+floor(n/2).
Original entry on oeis.org
1, 1, 4, 0, 15, 25, 3, 0, 30, 222, 226, 40, 0, 30, 1230, 3670, 2706, 535, 15, 0, 0, 5040, 39900, 69450, 40405, 8141, 420, 0, 0, 15120, 345240, 1254960, 1498035, 722275, 142877, 9730, 105, 0, 0, 30240, 2492280, 18587520, 40701780, 36450820, 15031204, 2871240, 226828, 5040
Offset: 2
Triangle starts:
[1],
[1, 4],
[0, 15, 25, 3],
[0, 30, 222, 226, 40],
[0, 30, 1230, 3670, 2706, 535, 15],
[0, 0, 5040, 39900, 69450, 40405, 8141, 420],
[0, 0, 15120, 345240, 1254960, 1498035, 722275, 142877, 9730, 105],
[0, 0, 30240, 2492280, 18587520, 40701780, 36450820, 15031204, 2871240, 226828, 5040],
...
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
-
\\ returns k-th column as vector.
C(k)=if(k<3, [], Vecrev(serlaplace(polcoef(exp(-x-1/2*x^2*y + O(x*x^k))*sum(i=0, 3*k\2, (1+y)^binomial(i, 2)*x^i/i!), k))/y)) \\ Andrew Howroyd, Jan 30 2020
-
T(n)={my(m=(3*n\2), y='y + O('y^(n+1))); my(g=exp(-x-1/2*x^2*y + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 2)*x^k/k!)); Mat([Col(serlaplace(p), -n) | p<-Vec(g)[2..m+1]])}
{ my(A=T(8)); for(n=2, matsize(A)[1], print(A[n, 3..3*n\2])) } \\ Andrew Howroyd, Jan 30 2020
A060092
Triangle T(n,k) of k-block ordered bicoverings of an unlabeled n-set, n >= 2, k = 3..n+floor(n/2).
Original entry on oeis.org
3, 7, 16, 12, 63, 125, 90, 18, 162, 722, 1716, 1680, 25, 341, 2565, 11350, 27342, 29960, 7560, 33, 636, 7180, 49860, 208302, 503000, 631512, 302400, 42, 1092, 17335, 173745, 1099602, 4389875, 10762299, 14975730, 9632700, 1247400
Offset: 2
[3],
[7, 16],
[12, 63, 125, 90],
[18, 162, 722, 1716, 1680],
[25, 341, 2565, 11350, 27342, 29960, 7560],
[33, 636, 7180, 49860, 208302, 503000, 631512, 302400],
[42, 1092, 17335, 173745, 1099602, 4389875, 10762299, 14975730, 9632700, 1247400], ...
There are 23=7+16 ordered bicoverings of an unlabeled 3-set: 7 3-block bicoverings and 16 4-block bicoverings, cf. A060090.
-
\\ gives g.f. of k-th column.
ColGf(k) = k!*polcoef(exp(-x - x^2*y/(2*(1-y)) + O(x*x^k))*sum(j=0, k, 1/(1-y)^binomial(j, 2)*x^j/j!), k) \\ Andrew Howroyd, Jan 30 2020
-
T(n)={my(m=(3*n\2), y='y + O('y^(n+1))); my(g=serlaplace(exp(-x - x^2*y/(2*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 2)*x^k/k!))); Mat([Col(p/y^2, -n) | p<-Vec(g)[2..m+1]])}
{ my(A=T(8)); for(n=2, matsize(A)[1], print(A[n, 3..3*n\2])) } \\ Andrew Howroyd, Jan 30 2020
A059530
Triangle T(n,k) of k-block T_0-tricoverings of an n-set, n >= 3, k = 0..2*n.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 39, 89, 43, 3, 0, 0, 0, 0, 0, 252, 2192, 4090, 2435, 445, 12, 0, 0, 0, 0, 0, 1260, 37080, 179890, 289170, 188540, 50645, 4710, 70, 0, 0, 0, 0, 0, 5040, 536760, 6052730, 20660055, 29432319, 19826737, 6481160, 964495, 52430
Offset: 3
Triangle begins:
[0, 0, 0, 0, 1, 3, 1],
[0, 0, 0, 0, 1, 39, 89, 43, 3],
[0, 0, 0, 0, 0, 252, 2192, 4090, 2435, 445, 12],
[0, 0, 0, 0, 0, 1260, 37080, 179890, 289170, 188540, 50645, 4710, 70],
...
There are 5 = 1 + 3 + 1 T_0-tricoverings of a 3-set and 175 = 1 + 39 + 89 + 43 + 3 T_0-tricoverings of a 4-set, cf. A060070.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
-
\\ gets k-th column as vector
C(k)=if(k<4, [], Vecrev(serlaplace(polcoef(exp(-x + x^2/2 + x^3*y/3 + O(x*x^k))*sum(i=0, 2*k, (1+y)^binomial(i, 3)*exp(-x^2*(1+y)^i/2 + O(x*x^k))*x^i/i!), k))/y)) \\ Andrew Howroyd, Jan 30 2020
-
T(n)={my(m=2*n, y='y + O('y^(n+1))); my(g=exp(-x + x^2/2 + x^3*y/3 + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 3)*exp(-x^2*(1+y)^k/2 + O(x*x^m))*x^k/k!)); Mat([Col(serlaplace(p), -n) | p<-Vec(g)[2..m+1]]);}
{ my(A=T(8)); for(n=3, matsize(A)[1], print(concat([0], A[n, 1..2*n]))) } \\ Andrew Howroyd, Jan 30 2020
A060488
Number of 4-block ordered tricoverings of an unlabeled n-set.
Original entry on oeis.org
4, 13, 28, 50, 80, 119, 168, 228, 300, 385, 484, 598, 728, 875, 1040, 1224, 1428, 1653, 1900, 2170, 2464, 2783, 3128, 3500, 3900, 4329, 4788, 5278, 5800, 6355, 6944, 7568, 8228, 8925, 9660, 10434, 11248, 12103, 13000, 13940, 14924, 15953, 17028, 18150, 19320
Offset: 3
Fourth column (m=3) of (1, 4)-Pascal triangle
A095666.
-
[(n-2)*(n-1)*(n+9)/6: n in [3..60]]; // Vincenzo Librandi, Jun 15 2011
-
Table[ 3 (n - 1) (n - 2)/2! + n (n - 1) (n - 2)/3!, {n, 3, 62}] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *)
Table[(n-2)(n-1)(n+9)/6,{n,3,50}] (* or *) LinearRecurrence[{4,-6,4,-1}, {4,13,28,50},50] (* Harvey P. Dale, Jul 21 2012 *)
-
a(n)=(n-2)*(n-1)*(n+9)/6 \\ Charles R Greathouse IV, Jun 14 2011
A060491
Number of ordered tricoverings of an unlabeled n-set.
Original entry on oeis.org
1, 0, 0, 184, 17488, 2780752, 689187720, 236477490418, 107317805999204, 62318195302890305, 45081693413563797127, 39762626850034005271588, 42009504510315968282400843, 52381340312720286113688037624, 76118747309505733406576769607755
Offset: 0
There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060492).
Cf.
A060486,
A060487,
A060090,
A060092,
A060069,
A060070,
A060051,
A060052,
A060053,
A002718,
A059443.
-
seq(n)={my(m=2*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020
A060489
Number of 5-block ordered tricoverings of an unlabeled n-set.
Original entry on oeis.org
0, 0, 60, 375, 1392, 4020, 9960, 22200, 45730, 88543, 163000, 287650, 489610, 807625, 1295944, 2029165, 3108220, 4667690, 6884660, 9989345, 14277740, 20126570, 28010840, 38524310, 52403246, 70553825, 94083600, 124337460, 162938550, 211834647, 273350520, 350246835
Offset: 1
a(1)=a(2)=0 prepended and terms a(30) and beyond from
Andrew Howroyd, Jan 30 2020
A060490
Number of 6-block ordered tricoverings of an unlabeled n-set.
Original entry on oeis.org
0, 0, 120, 3030, 24552, 130740, 551640, 1997415, 6470420, 19219462, 53187840, 138658760, 343297780, 812249250, 1845669776, 4044119530, 8573706300, 17637474350, 35294157340, 68850086745, 131179071560, 244518601660, 446576824800, 800201972990, 1408466719120
Offset: 1
a(1)=a(2)=0 prepended and terms a(23) and beyond from
Andrew Howroyd, Jan 30 2020
Showing 1-7 of 7 results.
Comments