A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A095666
Pascal (1,4) triangle.
Original entry on oeis.org
4, 1, 4, 1, 5, 4, 1, 6, 9, 4, 1, 7, 15, 13, 4, 1, 8, 22, 28, 17, 4, 1, 9, 30, 50, 45, 21, 4, 1, 10, 39, 80, 95, 66, 25, 4, 1, 11, 49, 119, 175, 161, 91, 29, 4, 1, 12, 60, 168, 294, 336, 252, 120, 33, 4, 1, 13, 72, 228, 462, 630, 588, 372, 153, 37, 4, 1, 14, 85, 300, 690, 1092
Offset: 0
Triangle begins:
[4];
[1,4];
[1,5,4];
[1,6,9,4];
[1,7,15,13,4];
...
Row sums:
A020714(n-1), n >= 1, 4 if n=0.
Alternating row sums are [4, -3, followed by 0's].
-
a095666 n k = a095666_tabl !! n !! k
a095666_row n = a095666_tabl !! n
a095666_tabl = [4] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,4]
-- Reinhard Zumkeller, Apr 08 2012
-
a(n,k):=(1+3*k/n)*binomial(n,k) # Mircea Merca, Apr 08 2012
-
A095666[n_, k_] := If[n == k, 4, (3*k/n + 1)*Binomial[n, k]];
Table[A095666[n, k], {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Apr 14 2025 *)
A060492
Triangle T(n,k) of k-block ordered tricoverings of an unlabeled n-set (n >= 3, k = 4..2n).
Original entry on oeis.org
4, 60, 120, 13, 375, 3030, 9030, 5040, 28, 1392, 24552, 207900, 838320, 1345680, 362880, 50, 4020, 130740, 2208430, 20334720, 101752560, 257065200, 261122400, 46569600, 80, 9960, 551640, 16365410, 274814760, 2709457128, 15812198640
Offset: 3
Triangle begins:
[4, 60, 120],
[13, 375, 3030, 9030, 5040],
[28, 1392, 24552, 207900, 838320, 1345680, 362880],
[50, 4020, 130740, 2208430, 20334720, 101752560, 257065200, 261122400, 46569600], [80, 9960, 551640, 16365410, 274814760, 2709457128, 15812198640, 52897521600, 91945022400, 64778313600, 8043235200],
...
There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060491).
-
\\ gives g.f. of k-th column.
ColGf(k) = k!*polcoef(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^k) )*sum(j=0, k, 1/(1-y)^binomial(j, 3)*exp((-x^2/2)/(1-y)^j + O(x*x^k))*x^j/j!), k) \\ Andrew Howroyd, Jan 30 2020
-
T(n)={my(m=2*n, y='y + O('y^(n+1))); my(g=serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))); Mat([Col(p/y^3, -n) | p<-Vec(g)[2..m+1]])}
{ my(A=T(8)); for(n=3, matsize(A)[1], print(A[n, 4..2*n])) } \\ Andrew Howroyd, Jan 30 2020
A026054
dot product (n,n-1,...2,1).(3,4,...,n,1,2).
Original entry on oeis.org
13, 28, 50, 80, 119, 168, 228, 300, 385, 484, 598, 728, 875, 1040, 1224, 1428, 1653, 1900, 2170, 2464, 2783, 3128, 3500, 3900, 4329, 4788, 5278, 5800, 6355, 6944, 7568, 8228, 8925, 9660, 10434, 11248, 12103, 13000, 13940, 14924, 15953, 17028, 18150, 19320, 20539, 21808, 23128, 24500, 25925
Offset: 3
-
List([0..60], n-> n*(n^2+9*n-10)/6); # G. C. Greubel, Oct 30 2019
-
[n*(n^2+9*n-10)/6: n in [3..60]]; // Vincenzo Librandi, Oct 17 2013
-
[n*(n^2+9*n-10)/6: n in [0..60]]; // G. C. Greubel, Oct 30 2019
-
seq(n*(n^2+9*n-10)/6, n=3..60); # G. C. Greubel, Oct 30 2019
-
Table[Range[n,1,-1].RotateLeft[Range[n],2],{n,3,60}] (* or *) LinearRecurrence[ {4,-6,4,-1},{13,28,50,80},60] (* Harvey P. Dale, Oct 14 2012 *)
Drop[CoefficientList[Series[x(13 -24x +16x^2 -4x^3)/(1-x)^4, {x, 0, 60}], x], 1] (* Vincenzo Librandi, Oct 17 2013 *)
-
vector(60, n, (n+2)*((n+2)^2+9*(n+2)-10)/6) \\ G. C. Greubel, Oct 30 2019
-
[n*(n^2+9*n-10)/6 for n in (0..60)] # G. C. Greubel, Oct 30 2019
A095667
Fifth column (m=4) of (1,4)-Pascal triangle A095666.
Original entry on oeis.org
4, 17, 45, 95, 175, 294, 462, 690, 990, 1375, 1859, 2457, 3185, 4060, 5100, 6324, 7752, 9405, 11305, 13475, 15939, 18722, 21850, 25350, 29250, 33579, 38367, 43645, 49445, 55800, 62744, 70312, 78540, 87465, 97125, 107559, 118807, 130910, 143910, 157850
Offset: 0
A060091
Number of 4-block ordered bicoverings of an unlabeled n-set.
Original entry on oeis.org
0, 0, 0, 16, 63, 162, 341, 636, 1092, 1764, 2718, 4032, 5797, 8118, 11115, 14924, 19698, 25608, 32844, 41616, 52155, 64714, 79569, 97020, 117392, 141036, 168330, 199680, 235521, 276318, 322567, 374796, 433566, 499472, 573144, 655248, 746487
Offset: 0
-
a(n) = if(n<1, 0, binomial(n + 5, 5) - 4*binomial(n + 2, 2) - 3*binomial(n + 1, 1) + 12*binomial(n, 0) - 6*binomial(n - 1, -1)) \\ Harry J. Smith, Jul 01 2009
Showing 1-6 of 6 results.
Comments