A060092
Triangle T(n,k) of k-block ordered bicoverings of an unlabeled n-set, n >= 2, k = 3..n+floor(n/2).
Original entry on oeis.org
3, 7, 16, 12, 63, 125, 90, 18, 162, 722, 1716, 1680, 25, 341, 2565, 11350, 27342, 29960, 7560, 33, 636, 7180, 49860, 208302, 503000, 631512, 302400, 42, 1092, 17335, 173745, 1099602, 4389875, 10762299, 14975730, 9632700, 1247400
Offset: 2
[3],
[7, 16],
[12, 63, 125, 90],
[18, 162, 722, 1716, 1680],
[25, 341, 2565, 11350, 27342, 29960, 7560],
[33, 636, 7180, 49860, 208302, 503000, 631512, 302400],
[42, 1092, 17335, 173745, 1099602, 4389875, 10762299, 14975730, 9632700, 1247400], ...
There are 23=7+16 ordered bicoverings of an unlabeled 3-set: 7 3-block bicoverings and 16 4-block bicoverings, cf. A060090.
-
\\ gives g.f. of k-th column.
ColGf(k) = k!*polcoef(exp(-x - x^2*y/(2*(1-y)) + O(x*x^k))*sum(j=0, k, 1/(1-y)^binomial(j, 2)*x^j/j!), k) \\ Andrew Howroyd, Jan 30 2020
-
T(n)={my(m=(3*n\2), y='y + O('y^(n+1))); my(g=serlaplace(exp(-x - x^2*y/(2*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 2)*x^k/k!))); Mat([Col(p/y^2, -n) | p<-Vec(g)[2..m+1]])}
{ my(A=T(8)); for(n=2, matsize(A)[1], print(A[n, 3..3*n\2])) } \\ Andrew Howroyd, Jan 30 2020
A060488
Number of 4-block ordered tricoverings of an unlabeled n-set.
Original entry on oeis.org
4, 13, 28, 50, 80, 119, 168, 228, 300, 385, 484, 598, 728, 875, 1040, 1224, 1428, 1653, 1900, 2170, 2464, 2783, 3128, 3500, 3900, 4329, 4788, 5278, 5800, 6355, 6944, 7568, 8228, 8925, 9660, 10434, 11248, 12103, 13000, 13940, 14924, 15953, 17028, 18150, 19320
Offset: 3
Fourth column (m=3) of (1, 4)-Pascal triangle
A095666.
-
[(n-2)*(n-1)*(n+9)/6: n in [3..60]]; // Vincenzo Librandi, Jun 15 2011
-
Table[ 3 (n - 1) (n - 2)/2! + n (n - 1) (n - 2)/3!, {n, 3, 62}] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *)
Table[(n-2)(n-1)(n+9)/6,{n,3,50}] (* or *) LinearRecurrence[{4,-6,4,-1}, {4,13,28,50},50] (* Harvey P. Dale, Jul 21 2012 *)
-
a(n)=(n-2)*(n-1)*(n+9)/6 \\ Charles R Greathouse IV, Jun 14 2011
A290776
Triangle T(n,k) read by rows: the number of connected, loopless, non-oriented, vertex-labeled graphs with n >= 0 edges and k >= 1 vertices, allowing multi-edges.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 7, 16, 0, 1, 12, 63, 125, 0, 1, 18, 162, 722, 1296, 0, 1, 25, 341, 2565, 10140, 16807, 0, 1, 33, 636, 7180, 47100, 169137, 262144, 0, 1, 42, 1092, 17335, 168285, 987567, 3271576, 4782969, 0, 1, 52, 1764, 37750, 509545, 4364017, 23315936, 72043092, 100000000
Offset: 0
The triangle starts in row n=0 with 1 <= k <= n+1 vertices as
1;
0, 1;
0, 1, 3;
0, 1, 7, 16;
0, 1, 12, 63, 125;
0, 1, 18, 162, 722, 1296;
0, 1, 25, 341, 2565, 10140, 16807;
0, 1, 33, 636, 7180, 47100, 169137, 262144;
0, 1, 42, 1092, 17355, 168285, 987567, 3271576, 4782969;
0, 1, 52, 1764, 37750, 509545, 4364017, 23315936, 72043092, 100000000;
...
-
S[m_, n_] := Binomial[Binomial[m, 2] + n - 1, n];
R[nn_] := Module[{cc = Array[0&, {nn, nn}]}, cc[[1, 1]] = 1; For[m = 1, m <= nn, m++, For[n = 1, n <= nn-1, n++, cc[[m, n+1]] = S[m, n] - S[m-1, n] - Sum[Sum[Binomial[m-1, i-1]*cc[[i, j+1]]*S[m-i, n-j], {j, 1, n}], {i, 2, m-1}]]]; cc // Transpose];
A = R[10];
Table[A[[n, k]], {n, 1, Length[A]}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 13 2018, after Andrew Howroyd *)
-
\\ here S(m,n) is m nodes with n edges, not necessarily connected
S(m,n)={ binomial(binomial(m,2) + n - 1, n) }
R(N)={ my(C=matrix(N,N)); C[1,1]=1; for(m=1, N, for(n=1, N-1, C[m,n+1] = S(m,n) - S(m-1,n) - sum(i=2, m-1, sum(j=1, n, binomial(m-1, i-1)*C[i,j+1]*S(m-i, n-j))))); C~; }
{ my(A=R(10)); for(n=1, #A, for(k=1, n, print1(A[n,k],", ")); print) } \\ Andrew Howroyd, May 13 2018
Showing 1-3 of 3 results.
Comments