cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A331569 Array read by antidiagonals: A(n,k) is the number of binary matrices with k distinct columns and any number of distinct nonzero rows with n ones in every column and columns in decreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 3, 0, 1, 0, 1, 17, 0, 0, 1, 0, 1, 230, 184, 0, 0, 1, 0, 1, 3264, 16936, 840, 0, 0, 1, 0, 1, 60338, 2711904, 768785, 0, 0, 0, 1, 0, 1, 1287062, 675457000, 1493786233, 21770070, 0, 0, 0, 1, 0, 1, 31900620, 232383728378, 5254074934990, 585810653616, 328149360, 0, 0, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 20 2020

Keywords

Comments

The condition that the columns be in decreasing order is equivalent to considering nonequivalent matrices with distinct columns up to permutation of columns.
A(n,k) is the number of k-block n-uniform T_0 set systems without isolated vertices.

Examples

			Array begins:
===============================================================
n\k | 0 1 2   3         4               5                 6
----+----------------------------------------------------------
  0 | 1 1 0   0         0               0                 0 ...
  1 | 1 1 1   1         1               1                 1 ...
  2 | 1 0 3  17       230            3264             60338 ...
  3 | 1 0 0 184     16936         2711904         675457000 ...
  4 | 1 0 0 840    768785      1493786233     5254074934990 ...
  5 | 1 0 0   0  21770070    585810653616 30604798810581906 ...
  6 | 1 0 0   0 328149360 161087473081920 ...
  ...
The A(2,2) = 3 matrices are:
   [1 1]  [1 0]  [1 0]
   [1 0]  [1 1]  [0 1]
   [0 1]  [0 1]  [1 1]
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, k<=1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }

Formula

A(n, k) = Sum_{j=0..k} Stirling1(k, j)*A331567(n, j)/k!.
A(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k-1, k-j)*A331571(n, j).
A331651(n) = Sum_{d|n} A(n/d, d).

A094630 Number of 3-uniform T_0-covers on n vertices.

Original entry on oeis.org

1, 0, 0, 0, 5, 893, 1039947, 34351783511, 72057317345649377, 19342812465159881755696499, 1329227995591486918148744122456237749, 46768052394574271874021714673583968385714779097997, 1684996666696914425950059618212919561731019777110516294609942096153
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 15 2004

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={Vec(serlaplace(exp(-x + x^2/2 + x^3/3 + O(x*x^n))*sum(k=0, n, 2^binomial(k, 3)*exp(-2^(k-1)*x^2 + O(x*x^(n-k)))*x^k/k!)))} \\ Andrew Howroyd, Jan 29 2020

Formula

E.g.f.: exp(-x+x^2/2+x^3/3)*Sum_{n>=0} 2^binomial(n, 3)*exp(-2^(n-1)*x^2)*x^n/n!.

A093853 Number of 3-uniform T_0-hypergraphs without multiple edges on n vertices.

Original entry on oeis.org

1, 1, 0, 0, 5, 918, 1045305, 34359063140, 72057592159917465, 19342813113675737866540892, 1329227995784915042800342940013202739, 46768052394588893381973221029683604571061797713236, 1684996666696914987166688353104182049991595860118136923187291272117
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, May 21 2004

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={Vec(serlaplace((1 + x)*exp(-x + x^2/2 + x^3/3 + O(x*x^n))*sum(k=0, n, 2^binomial(k, 3)*exp(-2^(k-1)*x^2 + O(x*x^(n-k)))*x^k/k!)))} \\ Andrew Howroyd, Jan 29 2020

Formula

E.g.f.: (1+x)*exp(-x+x^2/2+x^3/3)*Sum_{n>=0} 2^binomial(n, 3)*exp(-2^(n-1)*x^2)*x^n/n!.
Showing 1-3 of 3 results.