cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A094631 Number of n-block 3-uniform T_0-covers.

Original entry on oeis.org

1, 0, 0, 184, 16936, 2711904, 675457000, 232383728378, 105676839790294, 61466235823794521, 44524673319233300950, 39314601406037457009543, 41574584860907056125473119, 51879840704758774687928224799, 75441055286834286248687362255451, 126462548502721304612260672370098185
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 15 2004

Keywords

Comments

a(n) is the number of binary matrices with n distinct columns and any number of distinct nonzero rows with 3 ones in every column and columns in decreasing lexicographic order. - Andrew Howroyd, Jan 25 2020

Crossrefs

Row n=3 of A331569.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 25 2020

A093853 Number of 3-uniform T_0-hypergraphs without multiple edges on n vertices.

Original entry on oeis.org

1, 1, 0, 0, 5, 918, 1045305, 34359063140, 72057592159917465, 19342813113675737866540892, 1329227995784915042800342940013202739, 46768052394588893381973221029683604571061797713236, 1684996666696914987166688353104182049991595860118136923187291272117
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, May 21 2004

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={Vec(serlaplace((1 + x)*exp(-x + x^2/2 + x^3/3 + O(x*x^n))*sum(k=0, n, 2^binomial(k, 3)*exp(-2^(k-1)*x^2 + O(x*x^(n-k)))*x^k/k!)))} \\ Andrew Howroyd, Jan 29 2020

Formula

E.g.f.: (1+x)*exp(-x+x^2/2+x^3/3)*Sum_{n>=0} 2^binomial(n, 3)*exp(-2^(n-1)*x^2)*x^n/n!.
Showing 1-2 of 2 results.