A330982 Remeven numbers: having an even remainder modulo any of their digits, digit 0 forbidden.
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18, 22, 24, 26, 28, 32, 33, 35, 36, 38, 42, 44, 46, 48, 52, 54, 55, 62, 64, 66, 68, 72, 74, 76, 77, 82, 84, 86, 88, 92, 94, 96, 98, 99, 111, 112, 113, 114, 115, 116, 118, 119, 122, 124, 126, 128, 131, 132, 134, 135, 137, 138, 142, 144, 146, 148, 152
Offset: 1
Examples
12 is in the sequence because 12 % 1 = 0 and 12 % 2 = 0 both are even, where x % y is the remainder of x divided by y. 13 is not in the sequence because 13 % 3 = 1 is odd.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..10000, Jan 07 2020.
- Eric Angelini, Remeven numbers, SeqFan list, Jan 05 2020.
Crossrefs
Programs
-
Magma
[k:k in [1..160]|not 0 in Intseq(k) and forall{d:d in Intseq(k)|IsEven(k mod d)}]; // Marius A. Burtea, Jan 08 2020
-
Mathematica
Select[Range[200],DigitCount[#,10,0]==0&&AllTrue[Mod[#,IntegerDigits[ #]],EvenQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 02 2020 *)
-
PARI
select( {is_A330982(n,d=digits(n))=vecmin(d)&&!for(j=1,#d, bittest(n%d[j],0)&&return)}, [1..200]) \\ Using Set(digits) is about 20% slower
Comments