cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330982 Remeven numbers: having an even remainder modulo any of their digits, digit 0 forbidden.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18, 22, 24, 26, 28, 32, 33, 35, 36, 38, 42, 44, 46, 48, 52, 54, 55, 62, 64, 66, 68, 72, 74, 76, 77, 82, 84, 86, 88, 92, 94, 96, 98, 99, 111, 112, 113, 114, 115, 116, 118, 119, 122, 124, 126, 128, 131, 132, 134, 135, 137, 138, 142, 144, 146, 148, 152
Offset: 1

Views

Author

Eric Angelini and M. F. Hasler, Jan 05 2020

Keywords

Comments

The sequence is a subset of the zeroless numbers A052382 which have asymptotic density 0 because they are in the complement of pandigital numbers A171102 which have asymptotic density 1. But does it have finite density within A052382?
It contains all repdigit numbers A010785 \ {0} and also all numbers with only even digits A014263 \ {0} and all numbers divisible by all of their digits, A034838.
The graph is self-similar, it looks the same whether we take the graph of values < 10^4 or that of values < 10^5 etc.: In the range 0 < a(n) < 10^(k+1), there are jumps of size > 10^k/9 where the values cross the limits d*10^k, 1 <= d <= 9 (from a(n) <= {d-1}9...9 to a(n+1) >= d1...1, since 0's are forbidden).
There are N = (0, 9, 48, 303, 2190, 15871, 119442, 930324, ...) terms below 10^k, k >= 0; these N(k) are also the indices of terms a(N(k)) = 10^k-1 (k>0), which are followed by repunits a(N(k)+1) = a(N(k+1))/9 (k >= 0).
The smallest zeroless pandigital term is a(8455060) = 123567894. - Giovanni Resta, Jan 08 2020

Examples

			12 is in the sequence because 12 % 1 = 0 and 12 % 2 = 0 both are even, where x % y is the remainder of x divided by y.
13 is not in the sequence because 13 % 3 = 1 is odd.
		

Crossrefs

Cf. A330981 (remodd numbers).
Cf. A171102 (pandigitals), A010785 (repdigits), A014263 (only even digits), A034838 (divisible by all digits).

Programs

  • Magma
    [k:k in [1..160]|not 0 in Intseq(k) and forall{d:d in Intseq(k)|IsEven(k mod d)}]; // Marius A. Burtea, Jan 08 2020
  • Mathematica
    Select[Range[200],DigitCount[#,10,0]==0&&AllTrue[Mod[#,IntegerDigits[ #]],EvenQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 02 2020 *)
  • PARI
    select( {is_A330982(n,d=digits(n))=vecmin(d)&&!for(j=1,#d, bittest(n%d[j],0)&&return)}, [1..200]) \\ Using Set(digits) is about 20% slower