A330992 Least positive integer with exactly prime(n) factorizations into factors > 1, or 0 if no such integer exists.
4, 8, 16, 24, 60, 0, 0, 96, 0, 144, 216, 0, 0, 0, 288, 0, 0, 0, 768, 0, 0, 0, 0, 0, 864, 8192, 0, 0, 1080, 0, 0, 0, 1800, 3072, 0, 0, 0, 0, 0, 0, 0, 2304, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3456, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24576
Offset: 1
Keywords
Examples
Factorizations of the initial positive terms are: 4 8 16 24 60 96 2*2 2*4 2*8 3*8 2*30 2*48 2*2*2 4*4 4*6 3*20 3*32 2*2*4 2*12 4*15 4*24 2*2*2*2 2*2*6 5*12 6*16 2*3*4 6*10 8*12 2*2*2*3 2*5*6 2*6*8 3*4*5 3*4*8 2*2*15 4*4*6 2*3*10 2*2*24 2*2*3*5 2*3*16 2*4*12 2*2*3*8 2*2*4*6 2*3*4*4 2*2*2*12 2*2*2*2*6 2*2*2*3*4 2*2*2*2*2*3
Links
- R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
Crossrefs
Numbers whose number of partitions is prime are A046063.
Numbers whose number of strict partitions is prime are A035359.
Numbers whose number of set partitions is prime are A051130.
Numbers with a prime number of factorizations are A330991.
The least number with exactly 2^n factorizations is A330989(n).
Extensions
More terms from Jinyuan Wang, Jul 07 2021