A330993 Numbers k such that a multiset whose multiplicities are the prime indices of k has a prime number of multiset partitions.
3, 4, 5, 7, 8, 10, 11, 12, 13, 21, 22, 25, 33, 38, 41, 45, 46, 49, 50, 55, 57, 58, 63
Offset: 1
Examples
The multiset partitions for n = 1..6: {11} {12} {111} {1111} {123} {1112} {1}{1} {1}{2} {1}{11} {1}{111} {1}{23} {1}{112} {1}{1}{1} {11}{11} {2}{13} {11}{12} {1}{1}{11} {3}{12} {2}{111} {1}{1}{1}{1} {1}{2}{3} {1}{1}{12} {1}{2}{11} {1}{1}{1}{2} The factorizations for n = 1..8: 4 6 8 16 30 24 32 60 2*2 2*3 2*4 2*8 5*6 3*8 4*8 2*30 2*2*2 4*4 2*15 4*6 2*16 3*20 2*2*4 3*10 2*12 2*2*8 4*15 2*2*2*2 2*3*5 2*2*6 2*4*4 5*12 2*3*4 2*2*2*4 6*10 2*2*2*3 2*2*2*2*2 2*5*6 3*4*5 2*2*15 2*3*10 2*2*3*5
Links
- R. E. Canfield, P. Erdős and C. Pomerance, On a Problem of Oppenheim concerning "Factorisatio Numerorum", J. Number Theory 17 (1983), 1-28.
Crossrefs
The same for powers of 2 (instead of primes) is A330990.
Numbers whose number of integer partitions is prime are A046063.
Numbers whose number of strict integer partitions is prime are A035359.
Numbers whose number of set partitions is prime are A051130.
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with prime(n) factorizations is A330992(n).
Factorizations of a number's inverse prime shadow are A318284.
Numbers with a prime number of factorizations are A330991.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; unsh[n_]:=Times@@MapIndexed[Prime[#2[[1]]]^#1&,Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Select[Range[30],PrimeQ[Length[facs[unsh[#]]]]&]
Comments