cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A330991 Positive integers whose number of factorizations into factors > 1 (A001055) is a prime number (A000040).

Original entry on oeis.org

4, 6, 8, 9, 10, 14, 15, 16, 21, 22, 24, 25, 26, 27, 30, 32, 33, 34, 35, 38, 39, 40, 42, 46, 49, 51, 54, 55, 56, 57, 58, 60, 62, 64, 65, 66, 69, 70, 74, 77, 78, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 102, 104, 105, 106, 110, 111, 114, 115, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

In short, A001055(a(n)) belongs to A000040.

Examples

			Factorizations of selected terms:
  (4)    (8)      (16)       (24)       (60)       (96)
  (2*2)  (2*4)    (2*8)      (3*8)      (2*30)     (2*48)
         (2*2*2)  (4*4)      (4*6)      (3*20)     (3*32)
                  (2*2*4)    (2*12)     (4*15)     (4*24)
                  (2*2*2*2)  (2*2*6)    (5*12)     (6*16)
                             (2*3*4)    (6*10)     (8*12)
                             (2*2*2*3)  (2*5*6)    (2*6*8)
                                        (3*4*5)    (3*4*8)
                                        (2*2*15)   (4*4*6)
                                        (2*3*10)   (2*2*24)
                                        (2*2*3*5)  (2*3*16)
                                                   (2*4*12)
                                                   (2*2*3*8)
                                                   (2*2*4*6)
                                                   (2*3*4*4)
                                                   (2*2*2*12)
                                                   (2*2*2*2*6)
                                                   (2*2*2*3*4)
                                                   (2*2*2*2*2*3)
		

Crossrefs

Factorizations are A001055, with image A045782, with complement A330976.
Numbers whose number of strict integer partitions is prime are A035359.
Numbers whose number of integer partitions is prime are A046063.
Numbers whose number of set partitions is prime are A051130.
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with prime(n) factorizations is A330992(n).

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],PrimeQ[Length[facs[#]]]&]

A330998 Sorted list containing the least number whose inverse prime shadow (A181821) has each possible nonzero number of factorizations into factors > 1.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

This is the sorted list of positions of first appearances in A318284 of each element of the range A045782.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The inverse prime shadow of n is the least number whose prime exponents are the prime indices of n.

Examples

			Factorizations of the inverse prime shadows of the initial terms:
    4    8      12     16       36       24       60       48
    2*2  2*4    2*6    2*8      4*9      3*8      2*30     6*8
         2*2*2  3*4    4*4      6*6      4*6      3*20     2*24
                2*2*3  2*2*4    2*18     2*12     4*15     3*16
                       2*2*2*2  3*12     2*2*6    5*12     4*12
                                2*2*9    2*3*4    6*10     2*3*8
                                2*3*6    2*2*2*3  2*5*6    2*4*6
                                3*3*4             3*4*5    3*4*4
                                2*2*3*3           2*2*15   2*2*12
                                                  2*3*10   2*2*2*6
                                                  2*2*3*5  2*2*3*4
                                                           2*2*2*2*3
The corresponding multiset partitions:
    {11}    {111}      {112}      {1111}        {1122}        {1112}
    {1}{1}  {1}{11}    {1}{12}    {1}{111}      {1}{122}      {1}{112}
            {1}{1}{1}  {2}{11}    {11}{11}      {11}{22}      {11}{12}
                       {1}{1}{2}  {1}{1}{11}    {12}{12}      {2}{111}
                                  {1}{1}{1}{1}  {2}{112}      {1}{1}{12}
                                                {1}{1}{22}    {1}{2}{11}
                                                {1}{2}{12}    {1}{1}{1}{2}
                                                {2}{2}{11}
                                                {1}{1}{2}{2}
		

Crossrefs

Taking n instead of the inverse prime shadow of n gives A330972.
Factorizations are A001055, with image A045782, with complement A330976.
Factorizations of inverse prime shadows are A318284.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    nds=Table[Length[facs[Times@@Prime/@nrmptn[n]]],{n,50}];
    Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}]

A330992 Least positive integer with exactly prime(n) factorizations into factors > 1, or 0 if no such integer exists.

Original entry on oeis.org

4, 8, 16, 24, 60, 0, 0, 96, 0, 144, 216, 0, 0, 0, 288, 0, 0, 0, 768, 0, 0, 0, 0, 0, 864, 8192, 0, 0, 1080, 0, 0, 0, 1800, 3072, 0, 0, 0, 0, 0, 0, 0, 2304, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3456, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24576
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Examples

			Factorizations of the initial positive terms are:
  4    8      16       24       60       96
  2*2  2*4    2*8      3*8      2*30     2*48
       2*2*2  4*4      4*6      3*20     3*32
              2*2*4    2*12     4*15     4*24
              2*2*2*2  2*2*6    5*12     6*16
                       2*3*4    6*10     8*12
                       2*2*2*3  2*5*6    2*6*8
                                3*4*5    3*4*8
                                2*2*15   4*4*6
                                2*3*10   2*2*24
                                2*2*3*5  2*3*16
                                         2*4*12
                                         2*2*3*8
                                         2*2*4*6
                                         2*3*4*4
                                         2*2*2*12
                                         2*2*2*2*6
                                         2*2*2*3*4
                                         2*2*2*2*2*3
		

Crossrefs

All positive terms belong to A025487 and also A033833.
Factorizations are A001055, with image A045782, with complement A330976.
Numbers whose number of partitions is prime are A046063.
Numbers whose number of strict partitions is prime are A035359.
Numbers whose number of set partitions is prime are A051130.
Numbers with a prime number of factorizations are A330991.
The least number with exactly 2^n factorizations is A330989(n).

Extensions

More terms from Jinyuan Wang, Jul 07 2021

A330990 Numbers whose inverse prime shadow (A181821) has its number of factorizations into factors > 1 (A001055) equal to a power of 2 (A000079).

Original entry on oeis.org

1, 2, 3, 4, 6, 15, 44
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The inverse prime shadow of n is the least number whose prime exponents are the prime indices of n.

Examples

			The factorizations of A181821(n) for n = 1, 2, 3, 4, 6, 15:
  ()  (2)  (4)    (6)    (12)     (72)
           (2*2)  (2*3)  (2*6)    (8*9)
                         (3*4)    (2*36)
                         (2*2*3)  (3*24)
                                  (4*18)
                                  (6*12)
                                  (2*4*9)
                                  (2*6*6)
                                  (3*3*8)
                                  (3*4*6)
                                  (2*2*18)
                                  (2*3*12)
                                  (2*2*2*9)
                                  (2*2*3*6)
                                  (2*3*3*4)
                                  (2*2*2*3*3)
		

Crossrefs

The same for prime numbers (instead of powers of 2) is A330993,
Factorizations are A001055, with image A045782.
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with exactly 2^n factorizations is A330989.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],IntegerQ[Log[2,Length[facs[Times@@Prime/@nrmptn[#]]]]]&]

Formula

A001055(A181821(a(n))) = 2^k for some k >= 0.

A331201 Numbers k such that the number of factorizations of k into distinct factors > 1 is a prime number.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 74, 75, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 98, 99, 100, 102
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2020

Keywords

Comments

First differs from A080257 in lacking 60.

Examples

			Strict factorizations of selected terms:
  (6)    (12)   (24)     (48)     (216)
  (2*3)  (2*6)  (3*8)    (6*8)    (3*72)
         (3*4)  (4*6)    (2*24)   (4*54)
                (2*12)   (3*16)   (6*36)
                (2*3*4)  (4*12)   (8*27)
                         (2*3*8)  (9*24)
                         (2*4*6)  (12*18)
                                  (2*108)
                                  (3*8*9)
                                  (4*6*9)
                                  (2*3*36)
                                  (2*4*27)
                                  (2*6*18)
                                  (2*9*12)
                                  (3*4*18)
                                  (3*6*12)
                                  (2*3*4*9)
		

Crossrefs

The version for strict integer partitions is A035359.
The version for integer partitions is A046063.
The version for set partitions is A051130.
The non-strict version is A330991.
Factorizations are A001055 with image A045782 and complement A330976.
Strict factorizations are A045778 with image A045779 and complement A330975.
Numbers whose number of strict factorizations is odd are A331230.
Numbers whose number of strict factorizations is even are A331231.
The least number with n strict factorizations is A330974(n).

Programs

  • Mathematica
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],PrimeQ[Length[strfacs[#]]]&]
Showing 1-5 of 5 results.