A331020 Values k for successive maximal records of the function A defined as A(prime(k)) = log(prime(k)) - prime(k)/Pi(prime(k)) where Pi(prime(k)) is number of primes <= prime(k).
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 18, 21, 27, 28, 29, 30, 46, 61, 91, 121, 180, 184, 185, 186, 188, 189, 214, 216, 217, 257, 258, 775, 832, 1217, 1225, 1227, 1269, 1270, 1846, 1847, 2682, 2683, 2684, 2685, 2686, 2688
Offset: 1
Examples
n | a(n) | A(prime(a(n))) ---+------+--------------- 1 | 1 | -1.306852819 2 | 2 | -0.401387711 3 | 3 | -0.057228754 4 | 4 | 0.195910149 5 | 5 | 0.197895272 6 | 6 | 0.398282690 7 | 7 | 0.404641915 8 | 8 | 0.569438979 9 | 9 | 0.579938660 10 | 11 | 0.615805386
Links
- P. L. Chebyshev, Sur la totalité des nombres premiers inférieurs à une limite donnée, J. math. pures appl. 17, 1852 (in French).
- R. Farhadian & R. Jakimczuk, One more disproof for the Legendre's conjecture regarding the prime counting function Pi(x), Notes on Number Theory and Discrete Mathematics, Vol. 24, 2018, No. 3, 84-91.
- Eric Weisstein's World of Mathematics, Legendre's Constant.
Programs
-
Mathematica
max = -2; aa = {}; Do[kk = Log[Prime[n]] - Prime[n]/PrimePi[Prime[n]]; If[kk > max, max = kk; AppendTo[aa, n]], {n, 1, 2700}]; aa
Comments