cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A291194 Numbers k having at least one prime factor p such that p^2 divides 2^(k-1) - 1.

Original entry on oeis.org

1093, 3511, 398945, 796797, 1194649, 1592501, 1990353, 2388205, 2786057, 3183909, 3581761, 3979613, 4377465, 4775317, 5173169, 5571021, 5968873, 6165316, 6366725, 6764577, 7162429, 7560281, 7958133, 8355985, 8753837, 9151689, 9549541, 9947393, 10345245
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 20 2017

Keywords

Comments

Another version of A001220.
Sequence is infinite since if k is a term then also k^m is a term, for every m >= 2.
What is the smallest number in this sequence which is not of the form 13*n + 1?
Complete factorizations of the first 15 terms:
a(1) = 1093
a(2) = 3511
a(3) = 5 * 73 * 1093
a(4) = 3^6 * 1093
a(5) = 1093^2
a(6) = 31 * 47 * 1093
a(7) = 3 * 607 * 1093
a(8) = 5 * 19 * 23 * 1093
a(9) = 1093 * 2549
a(10) = 3 * 971 * 1093
a(11) = 29 * 113 * 1093
a(12) = 11 * 331 * 1093
a(13) = 3^2 * 5 * 89 * 1093
a(14) = 17 * 257 * 1093
a(15) = 1093 * 4733
These are the numbers k for which gcd(k^2, 2^(k-1)-1) is not squarefree. However, numbers k such that gcd(k^2, 2^(k-1)-1) > k are a proper subset of them. Are there infinitely many such numbers? See A331021. - Amiram Eldar and Thomas Ordowski, Jan 06 2020

Crossrefs

Cf. A190991, A270833. A001220 gives the primes.

Programs

  • Magma
    lst:=[]; for n in [2..10345245] do f:=Factorization(n); if not IsNull([x: x in [1..#f] | Modexp(2, n-1, f[x][1]^2) eq 1]) then Append(~lst, n); end if; end for; lst;
Showing 1-1 of 1 results.