A331024 Denominator: factorizations divided by strict factorizations A001055(n)/A045778(n).
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 7, 1, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 9, 1, 1, 3, 4, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 3, 3, 1, 1, 1, 7, 2, 1, 1, 9, 1, 1, 1, 5, 1, 9, 1, 3, 1, 1, 1, 10, 1, 3, 3, 5, 1, 1, 1, 5, 1
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[facs[n]]/Length[Select[facs[n],UnsameQ@@#&]],{n,100}]//Denominator
-
PARI
A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s)); A045778(n, m=n) = ((n<=m) + sumdiv(n, d, if((d>1)&&(d<=m)&&(d
A045778(n/d, d-1)))); A331024(n) = denominator(A001055(n)/A045778(n)); \\ Antti Karttunen, May 27 2021
Formula
a(2^n) = A330995(n).
Extensions
More terms from Antti Karttunen, May 27 2021
Comments