cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331121 a(n) is the smallest positive integer k for which tau(k) does not divide sigma(n).

Original entry on oeis.org

2, 2, 4, 2, 6, 16, 4, 2, 2, 6, 16, 4, 4, 16, 16, 2, 6, 2, 4, 6, 4, 16, 16, 24, 2, 6, 4, 4, 6, 16, 4, 2, 16, 6, 16, 2, 4, 24, 4, 6, 6, 16, 4, 16, 6, 16, 16, 4, 2, 2, 16, 4, 6, 36, 16, 36, 4, 6, 24, 16, 4, 16, 4, 2, 16, 16
Offset: 1

Views

Author

Lechoslaw Ratajczak, Jan 10 2020

Keywords

Comments

Consecutive t satisfying the equation a(t) = 2 are consecutive elements of A028982 (squares and twice squares).
Conjecture: consecutive u satisfying the equation a(u) = 4 are consecutive elements of a sequence defined as follows: (A024614 \ A088535) \ A074384. The conjecture was checked for 10^6 consecutive integers.

Examples

			a(10) = 6 because sigma(10) = 18 is divisible by (tau(1) = 1), (tau(2) = 2), (tau(3) = 2), (tau(4) = 3), (tau(5) = 2), and is not divisible by (tau(6) = 4).
		

Crossrefs

Programs

  • Mathematica
    Array[Block[{k = 1}, While[Mod[DivisorSigma[1, #], DivisorSigma[0, k]] == 0, k++]; k] &, 66] (* Michael De Vlieger, Jan 31 2020 *)
  • Maxima
    a(n):=(for k:1 while mod(divsum(n), length(divisors(k))) = 0 do z:k, z+1) $ makelist(a(n), n, 1, 100, 1);
    
  • PARI
    a(n) = my(k=1, sn=sigma(n)); while ((sn % numdiv(k)) == 0, k++); k; \\ Michel Marcus, Jan 10 2020