A331161 Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k distinct columns and any number of nonzero rows with column sums n and rows in nonincreasing lexicographic order.
1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 7, 3, 1, 0, 1, 43, 28, 5, 1, 0, 1, 403, 599, 104, 7, 1, 0, 1, 5245, 23243, 6404, 332, 11, 1, 0, 1, 89132, 1440532, 872681, 57613, 1032, 15, 1, 0, 1, 1898630, 131530132, 222686668, 26560747, 473674, 2983, 22, 1
Offset: 0
Examples
Array begins: ==================================================================== n\k | 0 1 2 3 4 5 6 ----+--------------------------------------------------------------- 0 | 1 1 0 0 0 0 0 ... 1 | 1 1 1 1 1 1 1 ... 2 | 1 2 7 43 403 5245 89132 ... 3 | 1 3 28 599 23243 1440532 131530132 ... 4 | 1 5 104 6404 872681 222686668 95605470805 ... 5 | 1 7 332 57613 26560747 26852940027 52296207431182 ... 6 | 1 11 1032 473674 712725249 2776638423133 ... 7 | 1 15 2983 3599384 17328777789 ... ... The A(2,2) = 7 matrices are: [2 1] [2 0] [1 2] [1 1] [2 0] [1 0] [1 0] [0 1] [0 2] [1 0] [1 0] [0 1] [1 0] [1 0] [0 1] [0 1] [0 2] [0 1] [0 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..209
Crossrefs
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(EulerT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)} T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, k<=1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p, n, k), [1, n]); s*q[#q-j]))}
Comments