cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A331257 Numerator of squared radius of inscribed circle of the n-th triangle with integer sides in the list given by A316841. Denominators are A331258.

Original entry on oeis.org

1, 3, 1, 9, 5, 1, 3, 5, 4, 7, 3, 45, 4, 25, 21, 1, 75, 9, 2, 63, 12, 25, 35, 9, 27, 8, 7, 9, 11, 5, 27, 2, 175, 3, 49, 3, 3, 147, 11, 5, 135, 8, 245, 13, 3, 99, 20, 225, 18, 49, 63, 16, 55, 5, 189, 16, 39, 4, 165, 3, 15, 48, 15, 7, 117, 12, 275, 45, 441, 16
Offset: 1

Views

Author

Hugo Pfoertner, Jan 26 2020

Keywords

Examples

			   n i (A316843)
   | | j (A316844)
   | | | k (A316845)
   | | | |  a(n) this sequence
   | | | |  |  A331258(n)
   | | | |  |  |  rho = sqrt(a(n)/A331258(n))
   1 1 1 1  1 12  0.28868
   2 2 2 1  3 20  0.38730
   3 2 2 2  1  3  0.57735
   4 3 2 2  9 28  0.56695
   5 3 3 1  5 28  0.42258
   6 3 3 2  1  2  0.70711
   7 3 3 3  3  4  0.86603
   8 4 3 2  5 12  0.64550
   9 4 3 3  4  5  0.89443
  10 4 4 1  7 36  0.44096
  11 4 4 2  3  5  0.77460
  12 4 4 3 45 44  1.01130
  13 4 4 4  4  3  1.15470
  14 5 3 3 25 44  0.75378
  15 5 4 2 21 44  0.69085
  16 5 4 3  1  1  1.00000
		

Crossrefs

Programs

  • PARI
    rh2(a, b, c)={my(s=(a+b+c)/2); (s-a)*(s-b)*(s-c)/s};
    for(i=1, 8, for(j=1, i, for(k=1, j, if(j+k>i, print1(numerator(rh2(i, j, k)), ", ")))))

Formula

Radius of inscribed circle of a triangle with sides (a,b,c):
rho(a,b,c) = sqrt((s - a)*(s - b)*(s - c)/s) with s = (a + b + c)/2.

A140246 Decimal expansion of sqrt(15)/6.

Original entry on oeis.org

6, 4, 5, 4, 9, 7, 2, 2, 4, 3, 6, 7, 9, 0, 2, 8, 1, 4, 1, 9, 6, 5, 4, 4, 2, 3, 3, 2, 9, 7, 0, 6, 6, 6, 0, 1, 8, 0, 5, 4, 8, 6, 9, 5, 0, 8, 8, 1, 9, 3, 1, 8, 0, 4, 4, 3, 1, 2, 6, 2, 2, 9, 4, 3, 5, 2, 2, 4, 7, 1, 8, 1, 9, 8, 9, 4, 9, 6, 5, 0, 5, 5, 8, 6, 5, 4, 7, 8, 9, 6, 1, 4, 3, 1, 1, 2, 2, 5, 2, 9, 8, 6, 0, 5, 0
Offset: 0

Views

Author

Rick L. Shepherd, May 14 2008

Keywords

Comments

Inradius of the obtuse scalene triangle with sides of lengths 2, 3 and 4, the scalene triangle with least integer side lengths. Per the Weisstein link, the inradius is the area divided by the semiperimeter.

Examples

			0.64549722436790281419654423329706660180548695088193180443126229435224718198...
		

Crossrefs

Equals sqrt(A331257(8)/A331258(8)) (squared inradii of triangles with integer sides).

Programs

  • Mathematica
    RealDigits[Sqrt[15]/6,10,120][[1]] (* Harvey P. Dale, Mar 31 2013 *)
  • PARI
    sqrt(15)/6

Formula

sqrt(15)/6 = A010472/6 = 2*A140239/9.
Showing 1-2 of 2 results.