A331257 Numerator of squared radius of inscribed circle of the n-th triangle with integer sides in the list given by A316841. Denominators are A331258.
1, 3, 1, 9, 5, 1, 3, 5, 4, 7, 3, 45, 4, 25, 21, 1, 75, 9, 2, 63, 12, 25, 35, 9, 27, 8, 7, 9, 11, 5, 27, 2, 175, 3, 49, 3, 3, 147, 11, 5, 135, 8, 245, 13, 3, 99, 20, 225, 18, 49, 63, 16, 55, 5, 189, 16, 39, 4, 165, 3, 15, 48, 15, 7, 117, 12, 275, 45, 441, 16
Offset: 1
Examples
n i (A316843) | | j (A316844) | | | k (A316845) | | | | a(n) this sequence | | | | | A331258(n) | | | | | | rho = sqrt(a(n)/A331258(n)) 1 1 1 1 1 12 0.28868 2 2 2 1 3 20 0.38730 3 2 2 2 1 3 0.57735 4 3 2 2 9 28 0.56695 5 3 3 1 5 28 0.42258 6 3 3 2 1 2 0.70711 7 3 3 3 3 4 0.86603 8 4 3 2 5 12 0.64550 9 4 3 3 4 5 0.89443 10 4 4 1 7 36 0.44096 11 4 4 2 3 5 0.77460 12 4 4 3 45 44 1.01130 13 4 4 4 4 3 1.15470 14 5 3 3 25 44 0.75378 15 5 4 2 21 44 0.69085 16 5 4 3 1 1 1.00000
Programs
-
PARI
rh2(a, b, c)={my(s=(a+b+c)/2); (s-a)*(s-b)*(s-c)/s}; for(i=1, 8, for(j=1, i, for(k=1, j, if(j+k>i, print1(numerator(rh2(i, j, k)), ", ")))))
Formula
Radius of inscribed circle of a triangle with sides (a,b,c):
rho(a,b,c) = sqrt((s - a)*(s - b)*(s - c)/s) with s = (a + b + c)/2.
Comments