cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A331260 Denominator of harmonic mean of 3 consecutive primes. Numerators are A331259.

Original entry on oeis.org

31, 71, 167, 311, 551, 791, 1151, 1655, 2279, 3119, 3935, 4871, 5711, 6791, 2797, 9959, 11639, 13175, 14831, 16559, 18383, 20975, 24071, 27419, 30191, 32231, 33911, 36071, 40511, 45791, 51983, 55199, 60167, 64199, 69599, 24637, 79031, 84311, 29917, 94679
Offset: 1

Views

Author

Hugo Pfoertner, Jan 19 2020

Keywords

Examples

			See A331259.
		

Crossrefs

Programs

  • Maple
    P:= [seq(ithprime(i),i=1..102)]:
    f:= proc(a,b,c) if nops({a,b,c} mod 3) = 1 then (a*b+a*c+b*c)/3 else a*b+a*c+b*c fi end proc;
    [seq(f(P[i],P[i+1],P[i+2]),i=1..100)]; # Robert Israel, Jul 28 2024
  • PARI
    hm3(x, y, z)=3/(1/x+1/y+1/z);
    p1=2; p2=3; forprime(p3=5, 190, print1(denominator(hm3(p1, p2, p3)), ", "); p1=p2; p2=p3)

Formula

a(n) = denominator ((3*p1*p2*p3)/(p2*p3 + p1*p3 + p1*p2)) with p1 = prime(n), p2 = prime(n + 1), p3 = prime(n + 2).
a(n) = (p1*p2 + p1*p3 + p2*p3)/3 if p1 == p2 == p3 (mod 3), otherwise p1*p2 + p1*p3 + p2*p3. - Robert Israel, Jul 29 2024
Showing 1-1 of 1 results.