cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A331259 Numerator of harmonic mean of 3 consecutive primes. Denominators are A331260.

Original entry on oeis.org

90, 315, 1155, 3003, 7293, 12597, 22287, 38019, 62031, 99789, 141081, 195693, 248583, 321339, 146969, 572241, 723399, 870531, 1041783, 1228371, 1435983, 1750719, 2149617, 2615799, 3027273, 3339363, 3603867, 3953757, 4692777, 5639943, 6837807, 7483899, 8512221
Offset: 1

Views

Author

Hugo Pfoertner, Jan 19 2020

Keywords

Examples

			b(1) = a(1)/A331260(1) = 3*2*3*5 / (3*5 + 2*5 + 2*3) = 90/31,
b(2) = a(2)/A331260(2) = 3*3*5*7 / (5*7 + 3*7 + 3*5) = 315/71,
...
b(15) = a(15)/A331260(15) = 3*47*53*59 / (53*59 + 47*59 + 47*53) = 440907/8391 = 146969/2797. The common factor of 3 (see A292530) makes the denominator different from A127345(15).
		

Crossrefs

Programs

  • Maple
    q:= proc(a,b,c) if nops({a,b,c} mod 3) = 1 then a*b*c else 3*a*b*c fi end proc:
    P:= [seq(ithprime(i),i=1..102)]:
    seq(q(P[i],P[i+1],P[i+2]),i=1..100); # Robert Israel, Jul 29 2024
  • PARI
    hm3(x,y,z)=3/(1/x+1/y+1/z);
    p1=2; p2=3; forprime(p3=5,150, print1(numerator(hm3(p1,p2,p3)),", ");p1=p2;p2=p3)

Formula

a(n) = numerator ((3*p1*p2*p3)/(p2*p3 + p1*p3 + p1*p2)) with p1 = prime(n), p2 = prime(n + 1), p3 = prime(n + 2).
a(n) = p1*p2*p3 if p1 == p2 == p3 (mod 3), otherwise 3*p1*p2*p3. - Robert Israel, Jul 29 2024
Showing 1-1 of 1 results.