cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A331294 Positions of records in A331293.

Original entry on oeis.org

1, 8, 16, 25, 27, 49, 75, 81, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481, 37249, 38809, 39601, 44521, 49729, 51529, 52441, 54289
Offset: 1

Views

Author

Antti Karttunen, Jan 17 2020

Keywords

Crossrefs

Programs

  • PARI
    m=-1; k=0; for(n=1,2^17,t=A331293(n); if(t > m, m=t; k++; print1(n,", "); write("b331294.txt", k, " ", n)));

Formula

Conjectured: for n >= 9, a(n) = A000040(n-4)^2 = A001248(n-4).

A329348 The least significant nonzero digit in the primorial base expansion of primorial inflation of n, A108951(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 6, 2, 1, 2, 1, 4, 6, 2, 1, 3, 2, 2, 1, 4, 1, 5, 1, 1, 6, 2, 8, 4, 1, 2, 6, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 4, 6, 4, 1, 2, 4, 8, 6, 2, 1, 3, 1, 2, 3, 2, 13, 12, 1, 4, 6, 5, 1, 3, 1, 2, 5, 4, 2, 12, 1, 2, 1, 2, 1, 2, 11, 2, 6, 8, 1, 2, 6, 4, 6, 2, 7, 2, 1, 2, 10, 1, 1, 12, 1, 8, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2019

Keywords

Comments

Number of occurrences of the least primorial present in the greedy sum of primorials adding to A108951(n).
The greedy sum is also the sum with the minimal number of primorials, used for example in the primorial base representation.

Examples

			For n = 24 = 2^3 * 3, A108951(24) = A034386(2)^3 * A034386(3) = 2^3 * 6 = 48 = 1*30 + 3*6, and as the factor of the least primorial in the sum is 3, we have a(24) = 3.
		

Crossrefs

Programs

Formula

a(n) = A067029(A324886(n)) = A276088(A108951(n)).
a(n) <= A324888(n).
From Antti Karttunen, Jan 15-17 2020: (Start)
a(n) = A331188(n) mod A117366(n).
a(n) = A001511(A246277(A324886(n))).
(End)

Extensions

Name changed by Antti Karttunen, Jan 17 2020

A331188 Primorial inflation of A052126(n), where A052126(n) = n/(largest prime dividing n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 6, 2, 1, 4, 1, 2, 6, 8, 1, 12, 1, 4, 6, 2, 1, 8, 30, 2, 36, 4, 1, 12, 1, 16, 6, 2, 30, 24, 1, 2, 6, 8, 1, 12, 1, 4, 36, 2, 1, 16, 210, 60, 6, 4, 1, 72, 30, 8, 6, 2, 1, 24, 1, 2, 36, 32, 30, 12, 1, 4, 6, 60, 1, 48, 1, 2, 180, 4, 210, 12, 1, 16, 216, 2, 1, 24, 30, 2, 6, 8, 1, 72, 210, 4, 6, 2, 30, 32
Offset: 1

Views

Author

Antti Karttunen, Jan 14 2020

Keywords

Comments

The primorial inflation of n, A108951(n), divided by its largest squarefree divisor, which is also its largest primorial divisor.

Crossrefs

Programs

  • PARI
    A002110(n) = prod(i=1,n,prime(i));
    A331188(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, A002110(primepi(f[i, 1]))^(f[i, 2]-(#f~==i))));

Formula

a(n) = A108951(A052126(n)).
a(n) = A003557(A108951(n)).
a(n) = A111701(A108951(n)) = A108951(n) / A002110(A061395(n)).
Other identities. For all >= 1:
A000005(a(n)) = A329382(n) = A005361(A108951(n)).
a(n) mod A117366(n) = A329348(n).

A331292 The next more significant digit after A329348(n) in the primorial base expansion of A108951(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 4, 0, 0, 0, 1, 0, 1, 0, 0, 5, 0, 0, 3, 6, 8, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 3, 0, 1, 0, 0, 0, 0, 5, 0, 2, 0, 0, 3, 0, 16, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 0, 0, 10, 12, 0, 0, 0, 1, 6, 0, 12, 2, 6, 0, 0, 0, 0, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 17 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A007949(A246277(A324886(n))).
a(n) = A331293(n) modulo A000040(2+A061395(n)).
Showing 1-4 of 4 results.