A331315 Array read by antidiagonals: A(n,k) is the number of nonnegative integer matrices with k columns and any number of nonzero rows with column sums n and columns in nonincreasing lexicographic order.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 14, 4, 1, 1, 8, 150, 128, 8, 1, 1, 16, 2210, 10848, 1288, 16, 1, 1, 32, 41642, 1796408, 933448, 13472, 32, 1, 1, 64, 956878, 491544512, 1852183128, 85862144, 143840, 64, 1, 1, 128, 25955630, 200901557728, 7805700498776, 2098614254048, 8206774496, 1556480, 128, 1
Offset: 0
Examples
Array begins: ==================================================================== n\k | 0 1 2 3 4 5 ----+--------------------------------------------------------------- 0 | 1 1 1 1 1 1 ... 1 | 1 1 2 4 8 16 ... 2 | 1 2 14 150 2210 41642 ... 3 | 1 4 128 10848 1796408 491544512 ... 4 | 1 8 1288 933448 1852183128 7805700498776 ... 5 | 1 16 13472 85862144 2098614254048 140102945876710912 ... 6 | 1 32 143840 8206774496 2516804131997152 ... ... The A(2,2) = 14 matrices are: [1 0] [1 0] [1 0] [2 0] [1 1] [1 0] [1 0] [1 0] [0 1] [0 1] [0 1] [1 0] [1 1] [1 0] [0 1] [1 0] [0 1] [0 1] [0 1] [0 1] [0 2] [0 1] [0 1] [1 0] . [1 0] [1 0] [2 1] [2 0] [1 1] [1 0] [2 2] [0 2] [0 1] [0 1] [0 2] [1 1] [1 2] [1 0] [1 1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
Crossrefs
Programs
-
PARI
T(n, k)={my(m=n*k); sum(j=0, m, binomial(binomial(j+n-1, n)+k-1, k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}
Comments