A331325 a(n) = n!*[x^n] cosh(x/(1-x))/(1-x).
1, 1, 3, 15, 97, 745, 6571, 65359, 723969, 8842257, 118091251, 1712261551, 26786070433, 449634481465, 8059974923547, 153634497337455, 3102367733191681, 66145005096272929, 1484586887025099619, 34983117545622446287, 863397428225495045601, 22269844592814969946761
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..443
Programs
-
Maple
gf := cosh(x/(1 - x))/(1 - x): ser := series(gf, x, 22): seq(n!*coeff(ser, x, n), n=0..21); # Alternative: seq(add(abs(A021009(n, 2*k)), k=0..n/2), n=0..21); A331325 := proc(n) local S; S := proc(n, k) option remember; `if`(k = 0, 1, `if`(k > n, 0, S(n-1, k-1)/k + S(n-1, k))) end: n!*add(S(n, 2*k), k=0..n) end: seq(A331325(n), n=0..21);
-
Mathematica
a[n_] := n! HypergeometricPFQ[{1/2 - n/2, -n/2}, {1, 1/2, 1/2}, 1/4]; Array[a, 22, 0]
-
PARI
x='x+O('x^22); Vec(serlaplace(cosh(x/(1-x))/(1-x)))
-
Python
def A331325(): sa, sb, ta, tb, n = 1, 2, 1, 0, 2 yield sa yield ta while(True): s = 2*n*sb - ((n-1)**2)*sa t = 2*(n-1)*tb - ((n-1)**2)*ta sa, sb, ta, tb = sb, s, tb, t n += 1 yield (s + t)//2 a = A331325(); print([next(a) for _ in range(22)])
Formula
a(n) = Sum_{k=0..n/2} |A021009(n, 2*k)|.
a(n) = Sum_{k=0..n} binomial(n, 2*k)*n!/(2*k)!.
a(n) = n!*hypergeom([1/2 - n/2, -n/2], [1/2, 1/2, 1], 1/4).
(n+1)^2*(n+2)^2*a(n) - 4*(n+2)^3*a(n+1) + (6*n^2+30*n+37)*a(n+2) - 4*(n+3)*a(n+3)+a(n+4)=0. - Robert Israel, Jan 23 2020
Sum_{n>=0} a(n) * x^n / (n!)^2 = (1/2) * exp(x) * (BesselI(0,2*sqrt(x)) + BesselJ(0,2*sqrt(x))). - Ilya Gutkovskiy, Jul 18 2020
a(n) ~ 2^(-3/2) * exp(2*sqrt(n)-n-1/2) * n^(n+1/4) * (1 + 31/(48*sqrt(n))). - Vaclav Kotesovec, Feb 17 2024