cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A331333 Interpolating the factorial and the powers of 2. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 2, 2, 8, 4, 6, 36, 36, 8, 24, 192, 288, 128, 16, 120, 1200, 2400, 1600, 400, 32, 720, 8640, 21600, 19200, 7200, 1152, 64, 5040, 70560, 211680, 235200, 117600, 28224, 3136, 128, 40320, 645120, 2257920, 3010560, 1881600, 602112, 100352, 8192, 256
Offset: 0

Views

Author

Peter Luschny, Jan 19 2020

Keywords

Examples

			Triangle starts:
  [0] 1
  [1] 1,     2
  [2] 2,     8,      4
  [3] 6,     36,     36,      8
  [4] 24,    192,    288,     128,     16
  [5] 120,   1200,   2400,    1600,    400,     32
  [6] 720,   8640,   21600,   19200,   7200,    1152,   64
  [7] 5040,  70560,  211680,  235200,  117600,  28224,  3136,   128
  [8] 40320, 645120, 2257920, 3010560, 1881600, 602112, 100352, 8192, 256
		

Crossrefs

T(n, 0) = A000142(n), T(n, n) = A000079(n).
Row sums: A087912, alternating row sums: A295382, antidiagonal sums: A222467, positive half sums: A129683, negative half sums: A331334.
Cf. A021009.

Programs

  • Maple
    A331333 := proc(n, k) local S; S := proc(n, k) option remember;
    `if`(k = 0, 1, `if`(k > n, 0, 2*S(n-1, k-1)/k + S(n-1, k))) end: n!*S(n, k) end:
    seq(seq(A331333(n, k), k=0..n), n=0..8);

Formula

T(n, k) = n!*S(n, k) where S(n, k) is recursively defined by:
if k = 0 then 1 else if k > n then 0 else 2*S(n-1, k-1)/k + S(n-1, k).
From Peter Bala, Jan 19 2020: (Start)
T(n,k) = 2^k*(n!/k!)*binomial(n,k).
E.g.f.: exp((2*x*t)/(1 - x))/(1 - x) = 1 + (1 + 2*t)*x + (2 + 8*t + 4*t^2)*x^2/2! + .... Cf. A021009. (End)
Showing 1-1 of 1 results.