cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331355 Number of unoriented colorings of the edges of a regular 4-dimensional orthoplex with n available colors.

Original entry on oeis.org

1, 49127, 740360358, 733776248840, 155261523065875, 12340612271439081, 498926608780739307, 12298018390569089088, 207726683413584244680, 2604177120221402303875, 25650403577338260144611, 207023317470352041578712
Offset: 1

Views

Author

Robert A. Russell, Jan 14 2020

Keywords

Comments

A regular 4-dimensional orthoplex (also hyperoctahedron or cross polytope) has 8 vertices and 24 edges. Its Schläfli symbol is {3,3,4}. Two unoriented colorings are the same if congruent; chiral pairs are counted as one. Also the number of unoriented colorings of the square faces of a tesseract {4,3,3} with n available colors.

Crossrefs

Cf. A331354 (oriented), A331356 (chiral), A331357 (achiral).
Other polychora: A063843 (5-cell), A331359 (8-cell), A338953 (24-cell), A338965 (120-cell, 600-cell).
Row 4 of A337412 (orthoplex edges, orthotope ridges) and A337888 (orthotope faces, orthoplex peaks).

Programs

  • Mathematica
    Table[(48 n^3 + 64 n^4 + 44 n^6 + 84 n^7 + 56 n^8 + 12 n^9 + 5 n^12 +
        36 n^13 + 18 n^14 + 12 n^15 + 4 n^18 + n^24)/384, {n, 1, 25}]

Formula

a(n) = (48*n^3 + 64*n^4 + 44*n^6 + 84*n^7 + 56*n^8 + 12*n^9 + 5*n^12 +
36*n^13 + 18*n^14 + 12*n^15 + 4*n^18 + n^24) / 384.
a(n) = C(n,1) + 49125*C(n, 2) + 740212980*C(n, 3) + 730815102166*C(n, 4) + 151600044933990*C(n, 5) + 11420034970306170*C(n, 6) + 415777158607920585*C(n, 7) + 8643499341510394200*C(n, 8) + 113988734942055623055*C(n, 9) + 1023002477284840979850*C(n, 10) + 6559265715033958749900*C(n, 11) + 31097943476763200314200*C(n, 12) + 111710751446923209781200*C(n, 13) + 309231173588248964052000*C(n, 14) + 666846649590586048584000*C(n, 15) + 1126625898539640346848000*C(n, 16) + 1492173541849975272288000*C(n, 17) + 1541987122059614438208000*C(n, 18) + 1229356526029003532160000*C(n, 19) + 741102367008078915840000*C(n, 20) + 326583680209195368960000*C(n, 21) + 99234043419574103040000*C(n, 22) + 18581137031073576960000*C(n, 23) + 1615751046180311040000*C(n, 24), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
a(n) = A331354(n) - A331356(n) = (A331354(n) + A331357(n)) / 2 = A331356(n) + A331357(n).