A063843
Number of n-multigraphs on 5 nodes.
Original entry on oeis.org
0, 1, 34, 792, 10688, 90005, 533358, 2437848, 9156288, 29522961, 84293770, 217993600, 519341472, 1154658869, 2420188694, 4821091920, 9187076352, 16837177281, 29809183410, 51172613512, 85448030080, 139159855989, 221554769150, 345523218536, 528767663040
Offset: 0
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Vladeta Jovovic, Formulae for the number T(n,k) of n-multigraphs on k nodes
- Marko Riedel, Vertex colorings of the Petersen graph, Math StackExchange
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Row 4 of
A327084 (simplex edges and ridges) and
A337884 (simplex faces and peaks).
-
f:=n-> 1/120*(24*n^2+50*n^3+20*n^4+15*n^6+10*n^7+n^10);
-
Table[(24n^2+50n^3+20n^4+15n^6+10n^7+n^10)/120,{n,0,30}] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,1,34,792,10688,90005,533358,2437848,9156288,29522961,84293770},30] (* Harvey P. Dale, Oct 20 2012 *)
-
a(n)=n^2*(n^8+10*n^5+15*n^4+20*n^2+50*n+24)/120 \\ Charles R Greathouse IV, Jan 20 2012
A331359
Number of unoriented colorings of the edges of a tesseract with n available colors.
Original entry on oeis.org
1, 11251322, 4825746875682, 48038446526132256, 60632984344185045000, 20725680132763499134746, 2876113738439693827763387, 206323339930086669420462592, 8941884949194537156253481511
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (33, -528, 5456, -40920, 237336, -1107568, 4272048, -13884156, 38567100, -92561040, 193536720, -354817320, 573166440, -818809200, 1037158320, -1166803110, 1166803110, -1037158320, 818809200, -573166440, 354817320, -193536720, 92561040, -38567100, 13884156, -4272048, 1107568, -237336, 40920, -5456, 528, -33, 1)
A331354
Number of oriented colorings of the edges of a regular 4-dimensional orthoplex with n available colors.
Original entry on oeis.org
1, 90054, 1471640157, 1466049174160, 310441584462375, 24679078461920106, 997818989210621704, 24595659246351652992, 415450226822646218895, 5208333343963621522750, 51300691059764724112161, 414046079318115654521904
Offset: 1
- G. Royle, Partitions and Permutations
- Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
Row 4 of
A337411 (orthoplex edges, orthotope ridges) and
A337887 (orthotope faces, orthoplex peaks).
-
Table[(48n^3 + 32n^4 + 12n^6 + 12n^7 + 32n^8 + 12n^9 + n^12 + 24n^13 + 18n^14 + n^24)/192, {n, 1, 25}]
A331356
Number of chiral pairs of colorings of the edges of a regular 4-dimensional orthoplex with n available colors.
Original entry on oeis.org
0, 40927, 731279799, 732272925320, 155180061396500, 12338466190481025, 498892380429882397, 12297640855782563904, 207723543409061974215, 2604156223742219218875, 25650287482426463967550, 207022761847763612943192
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
Row 4 of
A337413 (orthoplex edges, orthotope ridges) and
A337889 (orthotope faces, orthoplex peaks).
-
Table[(48n^3 - 20n^6 - 60n^7 + 8n^8 + 12n^9 - 3n^12 + 12n^13 + 18n^14 - 12n^15 - 4n^18 + n^24)/384, {n, 1, 25}]
A331357
Number of achiral colorings of the edges of a regular 4-dimensional orthoplex with n available colors.
Original entry on oeis.org
1, 8200, 9080559, 1503323520, 81461669375, 2146080958056, 34228350856910, 377534786525184, 3140004522270465, 20896479183085000, 116094911796177061, 555622588428635520, 2346039511676401359, 8903083257215729960
Offset: 1
- G. Royle, Partitions and Permutations
- Index entries for linear recurrences with constant coefficients, signature (19, -171, 969, -3876, 11628, -27132, 50388, -75582, 92378, -92378, 75582, -50388, 27132, -11628, 3876, -969, 171, -19, 1).
Row 4 of
A337414 (orthoplex edges, orthotope ridges) and
A337890 (orthotope faces, orthoplex peaks).
A128767
Number of inequivalent n-colorings of the 4D hypercube under the full orthogonal group of the cube (of order 2^4*4! = 384).
Original entry on oeis.org
1, 402, 132102, 11756666, 405385550, 7416923886, 86986719477, 735192450952, 4834517667381, 26073250910950, 119759687845446, 481750080584202, 1733588303252702, 5673534527793146, 17109303241791825, 48047227408513056
Offset: 1
Ricardo Perez-Aguila (ricardo.perez.aguila(AT)gmail.com), Apr 04 2007
a(2)=402 because there are 402 inequivalent 2-colorings of the 4D hypercube.
- Banks, D. C.; Linton, S. A. & Stockmeyer, P. K. Counting Cases in Substitope Algorithms. IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 4, pp. 371-384. 2004.
- Perez-Aguila, Ricardo. Enumerating the Configurations in the n-Dimensional Orthogonal Polytopes Through Polya's Counting and A Concise Representation. Proceedings of the 3rd International Conference on Electrical and Electronics Engineering and XII Conference on Electrical Engineering ICEEE and CIE 2006, pp. 63-66.
- Polya, G. & Read R. C. Combinatorial Enumeration of Groups, Graphs and Chemical Compounds. Springer-Verlag, 1987.
- Banks, D. C.; Linton, S. A. & Stockmeyer, P. K., Counting Cases in Substitope Algorithms, IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 4, pp. 371-384. 2004.
- Perez-Aguila, Ricardo, Orthogonal Polytopes: Study and Application, PhD Thesis. Universidad de las Americas, Puebla. November, 2006.
- Perez-Aguila, Ricardo, Enumerating the Configurations in the n-Dimensional Orthogonal Polytopes Through Polya's Counting and A Concise Representation, Proceedings of the 3rd International Conference on Electrical and Electronics Engineering and XII Conference on Electrical Engineering ICEEE and CIE 2006, pp. 63-66.
- Index entries for linear recurrences with constant coefficients, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
Other elements:
A331359 (tesseract edges, hyperoctahedron faces),
A331355 (tesseract faces, hyperoctahedron edges),
A337957 (tesseract facets, hyperoctahedron vertices).
Other polychora:
A000389(n+4) (4-simplex facets/vertices),
A338949 (24-cell),
A338965 (120-cell, 600-cell).
Row 4 of
A325013 (orthoplex facets, orthotope vertices).
A337412
Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the edges of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.
Original entry on oeis.org
1, 2, 1, 3, 6, 1, 4, 21, 144, 1, 5, 55, 12111, 49127, 1, 6, 120, 358120, 740360358, 293122232, 1, 7, 231, 5131650, 733776248840, 3168520600399659, 25174334733080, 1, 8, 406, 45528756, 155261523065875, 314848558732420555904, 920040738175691418086226, 30035285091978202824, 1
Offset: 1
Table begins with T(1,1):
1 2 3 4 5 6 7 8 9 ...
1 6 21 55 120 231 406 666 1035 ...
1 144 12111 358120 5131650 45528756 288936634 1433251296 5887880415 ...
For T(2,2)=6, the arrangements are AAAA, AAAB, AABB, ABAB, ABBB, and BBBB.
-
m=1; (* dimension of color element, here an edge *)
Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
row[m]=b;
row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
array[n_, k_] := row[n] /. b -> k
Table[array[n,d+m-n], {d,8}, {n,m,d+m-1}] // Flatten
A338953
Number of unoriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using subsets of a set of n colors.
Original entry on oeis.org
1, 68774446639102959610154176, 5523164445430505961199114292414803649442426, 5448873034189827051954635848284422749083650351583379456, 10956401461402941741829572441752281718329313621842215239237500000
Offset: 1
Cf.
A338952 (oriented),
A338954 (chiral),
A338955 (achiral),
A338957 (exactly n colors),
A338949 (vertices, facets),
A063843 (5-cell),
A331359 (8-cell edges, 16-cell faces),
A331355 (16-cell edges, 8-cell faces),
A338965 (120-cell, 600-cell).
A337957
Number of unoriented colorings of the 8 cubic facets of a tesseract or of the 8 vertices of a hyperoctahedron.
Original entry on oeis.org
1, 15, 126, 715, 3060, 10626, 31465, 82251, 194580, 424270, 864501, 1663740, 3049501, 5359095, 9078630, 14891626, 23738715, 36890001, 56031760, 83369265, 121747626, 174792640, 247073751, 344291325, 473490550, 643304376
Offset: 1
Other elements:
A331355 (hyperoctahedron edges, tesseract faces),
A331359 (hyperoctahedron faces, tesseract edges),
A128767 (hyperoctahedron facets, tesseract vertices).
Row 4 of
A325005 (orthotope facets, orthoplex vertices).
-
Table[Binomial[Binomial[n+1,2]+3,4],{n,30}]
A337888
Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the square faces of a regular n-dimensional orthotope (hypercube) using k or fewer colors.
Original entry on oeis.org
1, 2, 1, 3, 10, 1, 4, 56, 49127, 1, 5, 220, 740360358, 314824532572147370464, 1, 6, 680, 733776248840, 38491882660671134164965704408524083, 38343035259947576596859948806931124970404417593861154473053467181056, 1
Offset: 2
Array begins with T(2,1):
1 2 3 4 5 6 ...
1 10 56 220 680 1771 ...
1 49127 740360358 733776248840 155261523065875 12340612271439081 ...
-
m=2; (* dimension of color element, here a square face *)
Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n - m]];
FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
array[n_, k_] := row[n] /. b -> k
Table[array[n,d+m-n], {d,6}, {n,m,d+m-1}] // Flatten
Showing 1-10 of 11 results.
Comments