A331353
Number of achiral colorings of the edges (or triangular faces) of a regular 4-dimensional simplex with n available colors.
Original entry on oeis.org
1, 28, 387, 2784, 13125, 46836, 137543, 349952, 797769, 1667500, 3248971, 5973408, 10459917, 17571204, 28479375, 44742656, 68393873, 102041532, 148984339, 213340000, 300189141, 415735188, 567481047, 764423424
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- G. Royle, Partitions and Permutations
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Row 4 of
A327086 (simplex edges and ridges) and
A337886 (simplex faces and peaks).
-
Table[(5 n^3 + n^7)/6, {n, 1, 25}]
-
Vec(x*(1 + 20*x + 191*x^2 + 416*x^3 + 191*x^4 + 20*x^5 + x^6) / (1 - x)^8 + O(x^25)) \\ Colin Barker, Jan 15 2020
A331354
Number of oriented colorings of the edges of a regular 4-dimensional orthoplex with n available colors.
Original entry on oeis.org
1, 90054, 1471640157, 1466049174160, 310441584462375, 24679078461920106, 997818989210621704, 24595659246351652992, 415450226822646218895, 5208333343963621522750, 51300691059764724112161, 414046079318115654521904
Offset: 1
- G. Royle, Partitions and Permutations
- Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
Row 4 of
A337411 (orthoplex edges, orthotope ridges) and
A337887 (orthotope faces, orthoplex peaks).
-
Table[(48n^3 + 32n^4 + 12n^6 + 12n^7 + 32n^8 + 12n^9 + n^12 + 24n^13 + 18n^14 + n^24)/192, {n, 1, 25}]
A331355
Number of unoriented colorings of the edges of a regular 4-dimensional orthoplex with n available colors.
Original entry on oeis.org
1, 49127, 740360358, 733776248840, 155261523065875, 12340612271439081, 498926608780739307, 12298018390569089088, 207726683413584244680, 2604177120221402303875, 25650403577338260144611, 207023317470352041578712
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
Row 4 of
A337412 (orthoplex edges, orthotope ridges) and
A337888 (orthotope faces, orthoplex peaks).
-
Table[(48 n^3 + 64 n^4 + 44 n^6 + 84 n^7 + 56 n^8 + 12 n^9 + 5 n^12 +
36 n^13 + 18 n^14 + 12 n^15 + 4 n^18 + n^24)/384, {n, 1, 25}]
A331356
Number of chiral pairs of colorings of the edges of a regular 4-dimensional orthoplex with n available colors.
Original entry on oeis.org
0, 40927, 731279799, 732272925320, 155180061396500, 12338466190481025, 498892380429882397, 12297640855782563904, 207723543409061974215, 2604156223742219218875, 25650287482426463967550, 207022761847763612943192
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
Row 4 of
A337413 (orthoplex edges, orthotope ridges) and
A337889 (orthotope faces, orthoplex peaks).
-
Table[(48n^3 - 20n^6 - 60n^7 + 8n^8 + 12n^9 - 3n^12 + 12n^13 + 18n^14 - 12n^15 - 4n^18 + n^24)/384, {n, 1, 25}]
A331361
Number of achiral colorings of the edges of a tesseract with n available colors.
Original entry on oeis.org
1, 93024, 294157089, 91983927296, 7960001890625, 304914963625056, 6652124939544609, 96100248309858304, 1013293206632601441, 8334166666733500000, 56066328722011832961, 319495406392484665344
Offset: 1
- G. Royle, Partitions and Permutations
- Index entries for linear recurrences with constant coefficients, signature (21, -210, 1330, -5985, 20349, -54264, 116280, -203490, 293930, -352716, 352716, -293930, 203490, -116280, 54264, -20349, 5985, -1330, 210, -21, 1).
A337414
Array read by descending antidiagonals: T(n,k) is the number of achiral colorings of the edges of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.
Original entry on oeis.org
1, 2, 1, 3, 6, 1, 4, 18, 70, 1, 5, 40, 1407, 8200, 1, 6, 75, 12480, 9080559, 12804908, 1, 7, 126, 69050, 1503323520, 4906480368591, 304899216832, 1, 8, 196, 281946, 81461669375, 48226825456539776, 187380251418565888983, 103685962258536432, 1
Offset: 1
Table begins with T(1,1):
1 2 3 4 5 6 7 8 9 10 ...
1 6 18 40 75 126 196 288 405 550 ...
1 70 1407 12480 69050 281946 931490 2632512 6598935 15041950 ...
For T(2,2)=6, the arrangements are AAAA, AAAB, AABB, ABAB, ABBB, and BBBB.
-
m=1; (* dimension of color element, here an edge *)
Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];
FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]],0,(per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[])]);
PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
row[m]=b;
row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
array[n_, k_] := row[n] /. b -> k
Table[array[n,d+m-n], {d,8}, {n,m,d+m-1}] // Flatten
A338955
Number of achiral colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using subsets of a set of n colors.
Original entry on oeis.org
1, 24124751133507584, 883287060208158070437496209, 27692675763559261523047959805034496, 18070082615414169898334284655914306640625, 1018202231744161700740376040914469837333037056
Offset: 1
Cf.
A338952 (oriented),
A338953 (unoriented),
A338954 (chiral),
A338959 (exactly n colors),
A338951 (vertices, facets),
A331353 (5-cell),
A331361 (8-cell edges, 16-cell faces),
A331357 (16-cell edges, 8-cell faces),
A338967 (120-cell, 600-cell).
A337955
Number of achiral colorings of the 16 tetrahedral facets of a hyperoctahedron or of the 16 vertices of a tesseract.
Original entry on oeis.org
1, 308, 34128, 1056576, 15303750, 136236276, 865711763, 4296782848, 17656466751, 62510672500, 196174554026, 557301826368, 1456216515468, 3543525156276, 8109415963125, 17592637669376, 36414622551373
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
Other elements:
A331361 (tesseract edges, hyperoctahedron faces),
A331357 (tesseract faces, hyperoctahedron edges),
A337958 (tesseract facets, hyperoctahedron vertices).
Other polychora:
A132366(n-1) (4-simplex facets/vertices),
A338951 (24-cell),
A338967 (120-cell, 600-cell).
Row 4 of
A325015 (orthoplex facets, orthotope vertices).
A337958
Number of achiral colorings of the 8 cubic facets of a tesseract or of the 8 vertices of a hyperoctahedron.
Original entry on oeis.org
1, 15, 126, 700, 2850, 9261, 25480, 61776, 135675, 275275, 523446, 943020, 1623076, 2686425, 4298400, 6677056, 10104885, 14942151, 21641950, 30767100, 43008966, 59208325, 80378376, 107730000, 142699375, 186978051, 242545590
Offset: 1
Other elements:
A331357 (hyperoctahedron edges, tesseract faces),
A331361 (hyperoctahedron faces, tesseract edges),
A337955 (hyperoctahedron facets, tesseract vertices).
Row 4 of
A325007 (orthotope facets, orthoplex vertices).
-
Table[Binomial[Binomial[n+1,2]+3,4] - Binomial[Binomial[n,2],4],{n,30}]
A337890
Array read by descending antidiagonals: T(n,k) is the number of achiral colorings of the square faces of a regular n-dimensional orthotope (hypercube) using k or fewer colors.
Original entry on oeis.org
1, 2, 1, 3, 10, 1, 4, 55, 8200, 1, 5, 200, 9080559, 199556208371776, 1, 6, 560, 1503323520, 1370366433970979158839987, 388032967149969852957120195660938882809069568, 1
Offset: 2
Array begins with T(2,1):
1 2 3 4 5 6 7 ...
1 10 55 200 560 1316 2730 ...
1 8200 9080559 1503323520 81461669375 2146080958056 34228350856910 ...
-
m=2; (* dimension of color element, here a square face *)
Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n - m]];
FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]],0,(per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[])]);
PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]
array[n_, k_] := row[n] /. b -> k
Table[array[n,d+m-n], {d,6}, {n,m,d+m-1}] // Flatten
Showing 1-10 of 11 results.
Comments