cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A100788 First differences of A063843.

Original entry on oeis.org

1, 33, 758, 9896, 79317, 443353, 1904490, 6718440, 20366673, 54770809, 133699830, 301347872, 635317397, 1265529825, 2400903226, 4365984432, 7650100929, 12972006129, 21363430102, 34275416568, 53711825909
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2005

Keywords

Programs

  • Mathematica
    Differences[Table[(24n^2+50n^3+20n^4+15n^6+10n^7+n^10)/120,{n,0,30}]] (* Harvey P. Dale, Oct 20 2012 *)

A000088 Number of simple graphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864, 165091172592, 50502031367952, 29054155657235488, 31426485969804308768, 64001015704527557894928, 245935864153532932683719776, 1787577725145611700547878190848, 24637809253125004524383007491432768
Offset: 0

Views

Author

Keywords

Comments

Euler transform of the sequence A001349.
Also, number of equivalence classes of sign patterns of totally nonzero symmetric n X n matrices.

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 430.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 519.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 240.
  • Thomas Boyer-Kassem, Conor Mayo-Wilson, Scientific Collaboration and Collective Knowledge: New Essays, New York, Oxford University Press, 2018, see page 47.
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 54.
  • Lupanov, O. B. Asymptotic estimates of the number of graphs with n edges. (Russian) Dokl. Akad. Nauk SSSR 126 1959 498--500. MR0109796 (22 #681).
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A002494.
Cf. A000666 (graphs with loops), A001349 (connected graphs), A002218, A006290, A003083.
Column k=1 of A063841.
Column k=2 of A309858.
Row sums of A008406.
Cf. also A000055, A000664.
Partial sums are A006897.

Programs

  • Maple
    # To produce all graphs on 4 nodes, for example:
    with(GraphTheory):
    L:=[NonIsomorphicGraphs](4,output=graphs,outputform=adjacency): # N. J. A. Sloane, Oct 07 2013
    seq(GraphTheory[NonIsomorphicGraphs](n,output=count),n=1..10); # Juergen Will, Jan 02 2018
    # alternative Maple program:
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
          +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
           add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    a:= n-> b(n$2, []):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    Needs["Combinatorica`"]
    Table[NumberOfGraphs[n], {n, 0, 19}] (* Geoffrey Critzer, Mar 12 2011 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *)
    b[n_, i_, l_] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[Ceiling[(p[[j]]-1 )/2]+Sum[GCD[p[[k]], p[[j]]], {k, 1, j-1}], {j, 1, Length[p]}]][Join[l, Table[1, {n}]]]), Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]];
    a[n_] := b[n, n, {}];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2019, after Alois P. Heinz *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000088(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 02 2024
  • Sage
    def a(n):
        return len(list(graphs(n)))
    # Ralf Stephan, May 30 2014
    

Formula

a(n) = 2^binomial(n, 2)/n!*(1+(n^2-n)/2^(n-1)+8*n!/(n-4)!*(3*n-7)*(3*n-9)/2^(2*n)+O(n^5/2^(5*n/2))) (see Harary, Palmer reference). - Vladeta Jovovic and Benoit Cloitre, Feb 01 2003
a(n) = 2^binomial(n, 2)/n!*[1+2*n$2*2^{-n}+8/3*n$3*(3n-7)*2^{-2n}+64/3*n$4*(4n^2-34n+75)*2^{-3n}+O(n^8*2^{-4*n})] where n$k is the falling factorial: n$k = n(n-1)(n-2)...(n-k+1). - Keith Briggs, Oct 24 2005
From David Pasino (davepasino(AT)yahoo.com), Jan 31 2009: (Start)
a(n) = a(n, 2), where a(n, t) is the number of t-uniform hypergraphs on n unlabeled nodes (cf. A000665 for t = 3 and A051240 for t = 4).
a(n, t) = Sum_{c : 1*c_1+2*c_2+...+n*c_n=n} per(c)*2^f(c), where:
..per(c) = 1/(Product_{i=1..n} c_i!*i^c_i);
..f(c) = (1/ord(c)) * Sum_{r=1..ord(c)} Sum_{x : 1*x_1+2*x_2+...+t*x_t=t} Product_{k=1..t} binomial(y(r, k; c), x_k);
..ord(c) = lcm{i : c_i>0};
..y(r, k; c) = Sum_{s|r : gcd(k, r/s)=1} s*c_(k*s) is the number of k-cycles of the r-th power of a permutation of type c. (End)
a(n) ~ 2^binomial(n,2)/n! [see Flajolet and Sedgewick p. 106, Gross and Yellen, p. 519, etc.]. - N. J. A. Sloane, Nov 11 2013
For asymptotics see also Lupanov 1959, 1960, also Turner and Kautz, p. 18. - N. J. A. Sloane, Apr 08 2014
a(n) = G(1) where G(z) = (1/n!) Sum_g det(I-g z^2)/det(I-g z) and g runs through the natural matrix n X n representation of the pair group A^2_n (for A^2_n see F. Harary and E. M. Palmer, Graphical Enumeration, page 83). - Leonid Bedratyuk, May 02 2015
From Keith Briggs, Jun 24 2016: (Start)
a(n) = 2^binomial(n,2)/n!*(
1+
2^( -n + 1)*n$2+
2^(-2*n + 3)*n$3*(n-7/3)+
2^(-3*n + 6)*n$4*(4*n^2/3 - 34*n/3 + 25) +
2^(-4*n + 10)*n$5*(8*n^3/3 - 142*n^2/3 + 2528*n/9 - 24914/45) +
2^(-5*n + 15)*n$6*(128*n^4/15 - 2296*n^3/9 + 25604*n^2/9 - 630554*n/45 + 25704) +
2^(-6*n + 21)*n$7*(2048*n^5/45 - 18416*n^4/9 + 329288*n^3/9 - 131680816*n^2/405 + 193822388*n/135 - 7143499196/2835) + ...),
where n$k is the falling factorial: n$k = n(n-1)(n-2)...(n-k+1), using the method of Wright 1969.
(End)
a(n) = 1/n*Sum_{k=1..n} a(n-k)*A003083(k). - Andrey Zabolotskiy, Aug 11 2020

Extensions

Harary gives an incorrect value for a(8); compare A007149

A000389 Binomial coefficients C(n,5).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349, 26334, 33649, 42504, 53130, 65780, 80730, 98280, 118755, 142506, 169911, 201376, 237336, 278256, 324632, 376992, 435897, 501942, 575757, 658008, 749398
Offset: 0

Views

Author

Keywords

Comments

a(n+4) is the number of inequivalent ways of coloring the vertices of a regular 4-dimensional simplex with n colors, under the full symmetric group S_5 of order 120, with cycle index (x1^5 + 10*x1^3*x2 + 20*x1^2*x3 + 15*x1*x2^2 + 30*x1*x4 + 20*x2*x3 + 24*x5)/120.
Figurate numbers based on 5-dimensional regular simplex. According to Hyun Kwang Kim, it appears that every nonnegative integer can be represented as the sum of g = 10 of these 5-simplex(n) numbers (compared with g=3 for triangular numbers, g=5 for tetrahedral numbers and g=8 for pentatope numbers). - Jonathan Vos Post, Nov 28 2004
The convolution of the nonnegative integers (A001477) with the tetrahedral numbers (A000292), which are the convolution of the nonnegative integers with themselves (making appropriate allowances for offsets of all sequences). - Graeme McRae, Jun 07 2006
a(n) is the number of terms in the expansion of (a_1 + a_2 + a_3 + a_4 + a_5 + a_6)^n. - Sergio Falcon, Feb 12 2007
Product of five consecutive numbers divided by 120. - Artur Jasinski, Dec 02 2007
Equals binomial transform of [1, 5, 10, 10, 5, 1, 0, 0, 0, ...]. - Gary W. Adamson, Feb 02 2009
Equals INVERTi transform of A099242 (1, 7, 34, 153, 686, 3088, ...). - Gary W. Adamson, Feb 02 2009
For a team with n basketball players (n>=5), this sequence is the number of possible starting lineups of 5 players, without regard to the positions (center, forward, guard) of the players. - Mohammad K. Azarian, Sep 10 2009
a(n) is the number of different patterns, regardless of order, when throwing (n-5) 6-sided dice. For example, one die can display the 6 numbers 1, 2, ..., 6; two dice can display the 21 digit-pairs 11, 12, ..., 56, 66. - Ian Duff, Nov 16 2009
Sum of the first n pentatope numbers (1, 5, 15, 35, 70, 126, 210, ...), see A000332. - Paul Muljadi, Dec 16 2009
Sum_{n>=0} a(n)/n! = e/120. Sum_{n>=4} a(n)/(n-4)! = 501*e/120. See A067764 regarding the second ratio. - Richard R. Forberg, Dec 26 2013
For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 4 elements, which is 3*C(n+1,5) (for n>=4), hence a(n) = 3*C(n+1,5) = 3*A000389(n+1). - Serhat Bulut, Mar 11 2015
a(n) = fallfac(n,5)/5! is also the number of independent components of an antisymmetric tensor of rank 5 and dimension n >= 1. Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Number of compositions (ordered partitions) of n+1 into exactly 6 parts. - Juergen Will, Jan 02 2016
Number of weak compositions (ordered weak partitions) of n-5 into exactly 6 parts. - Juergen Will, Jan 02 2016
a(n+3) could be the general number of all geodetic graphs of diameter n>=2 homeomorphic to the Petersen Graph. - Carlos Enrique Frasser, May 24 2018
From Robert A. Russell, Dec 24 2020: (Start)
a(n) is the number of chiral pairs of colorings of the 5 tetrahedral facets (or vertices) of the regular 4-D simplex (5-cell, pentachoron, Schläfli symbol {3,3,3}) using subsets of a set of n colors. Each member of a chiral pair is a reflection but not a rotation of the other.
a(n+4) is the number of unoriented colorings of the 5 tetrahedral facets of the regular 4-D simplex (5-cell, pentachoron) using subsets of a set of n colors. Each chiral pair is counted as one when enumerating unoriented arrangements. (End)
For integer m and positive integer r >= 4, the polynomial a(n) + a(n + m) + a(n + 2*m) + ... + a(n + r*m) in n has its zeros on the vertical line Re(n) = (4 - r*m)/2 in the complex plane. - Peter Bala, Jun 02 2024

Examples

			G.f. = x^5 + 6*x^6 + 21*x^7 + 56*x^8 + 126*x^9 + 252*x^10 + 462*x^11 + ...
For A={1,2,3,4}, the only subset with 4 elements is {1,2,3,4}; sum of 2 minimum elements of this subset: a(4) = 1+2 = 3 = 3*C(4+1,5).
For A={1,2,3,4,5}, the subsets with 4 elements are {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}; sum of 2 smallest elements of each subset: a(5) = (1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 18 = 3*C(5+1,5). - _Serhat Bulut_, Mar 11 2015
a(6) = 6 from the six independent components of an antisymmetric tensor A of rank 5 and dimension 6: A(1,2,3,4,5), A(1,2,3,4,6), A(1,2,3,5,6), A(1,2,4,5,6), A(1,3,4,5,6), A(2,3,4,5,6). See the Dec 10 2015 comment. - _Wolfdieter Lang_, Dec 10 2015
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • Gupta, Hansraj; Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A099242. - Gary W. Adamson, Feb 02 2009
Cf. A242023. A104712 (fourth column, k=5).
5-cell colorings: A337895 (oriented), A132366(n-1) (achiral).
Unoriented colorings: A063843 (5-cell edges, faces), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338949 (24-cell), A338965 (600-cell vertices, 120-cell facets).
Chiral colorings: A331352 (5-cell edges, faces), A337954 (8-cell vertices, 16-cell facets), A234249 (16-cell vertices, 8-cell facets), A338950 (24-cell), A338966 (600-cell vertices, 120-cell facets).

Programs

  • Haskell
    a000389 n = a000389_list !! n
    a000389_list = 0 : 0 : f [] a000217_list where
       f xs (t:ts) = (sum $ zipWith (*) xs a000217_list) : f (t:xs) ts
    -- Reinhard Zumkeller, Mar 03 2015, Apr 13 2012
    
  • Magma
    [Binomial(n, 5): n in [0..40]]; // Vincenzo Librandi, Mar 12 2015
  • Maple
    f:=n->(1/120)*(n^5-10*n^4+35*n^3-50*n^2+24*n): seq(f(n), n=0..60);
    ZL := [S, {S=Prod(B,B,B,B,B,B), B=Set(Z, 1 <= card)}, unlabeled]: seq(combstruct[count](ZL, size=n+1), n=0..42); # Zerinvary Lajos, Mar 13 2007
    A000389:=1/(z-1)**6; # Simon Plouffe, 1992 dissertation
  • Mathematica
    Table[Binomial[n, 5], {n, 5, 50}] (* Stefan Steinerberger, Apr 02 2006 *)
    CoefficientList[Series[x^5 / (1 - x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 12 2015 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,0,0,0,0,1},50] (* Harvey P. Dale, Jul 17 2016 *)
  • PARI
    (conv(u,v)=local(w); w=vector(length(u),i,sum(j=1,i,u[j]*v[i+1-j])); w);
    (t(n)=n*(n+1)/2); u=vector(10,i,t(i)); conv(u,u)
    

Formula

G.f.: x^5/(1-x)^6.
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)/120.
a(n) = (n^5-10*n^4+35*n^3-50*n^2+24*n)/120. (Replace all x_i's in the cycle index with n.)
a(n+2) = Sum_{i+j+k=n} i*j*k. - Benoit Cloitre, Nov 01 2002
Convolution of triangular numbers (A000217) with themselves.
Partial sums of A000332. - Alexander Adamchuk, Dec 19 2004
a(n) = -A110555(n+1,5). - Reinhard Zumkeller, Jul 27 2005
a(n+3) = (1/2!)*(d^2/dx^2)S(n,x)|A049310.%20-%20_Wolfdieter%20Lang">{x=2}, n>=2, one half of second derivative of Chebyshev S-polynomials evaluated at x=2. See A049310. - _Wolfdieter Lang, Apr 04 2007
a(n) = A052787(n+5)/120. - Zerinvary Lajos, Apr 26 2007
Sum_{n>=5} 1/a(n) = 5/4. - R. J. Mathar, Jan 27 2009
For n>4, a(n) = 1/(Integral_{x=0..Pi/2} 10*(sin(x))^(2*n-9)*(cos(x))^9). - Francesco Daddi, Aug 02 2011
Sum_{n>=5} (-1)^(n + 1)/a(n) = 80*log(2) - 655/12 = 0.8684411114... - Richard R. Forberg, Aug 11 2014
a(n) = -a(4-n) for all n in Z. - Michael Somos, Oct 07 2014
0 = a(n)*(+a(n+1) + 4*a(n+2)) + a(n+1)*(-6*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Oct 07 2014
a(n) = 3*C(n+1, 5) = 3*A000389(n+1). - Serhat Bulut, Mar 11 2015
From Ilya Gutkovskiy, Jul 23 2016: (Start)
E.g.f.: x^5*exp(x)/120.
Inverse binomial transform of A054849. (End)
From Robert A. Russell, Dec 24 2020: (Start)
a(n) = A337895(n) - a(n+4) = (A337895(n) - A132366(n-1)) / 2 = a(n+4) - A132366(n-1).
a(n+4) = A337895(n) - a(n) = (A337895(n) + A132366(n-1)) / 2 = a(n) + A132366(n-1).
a(n+4) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4) + 1*C(n,5), where the coefficient of C(n,k) is the number of unoriented pentachoron colorings using exactly k colors. (End)

Extensions

Corrected formulas that had been based on other offsets. - R. J. Mathar, Jun 16 2009
I changed the offset to 0. This will require some further adjustments to the formulas. - N. J. A. Sloane, Aug 01 2010

A004102 Number of signed graphs with n nodes. Also number of 2-multigraphs on n nodes.

Original entry on oeis.org

1, 1, 3, 10, 66, 792, 25506, 2302938, 591901884, 420784762014, 819833163057369, 4382639993148435207, 64588133532185722290294, 2638572375815762804156666529, 300400208094064113266621946833097, 95776892467035669509813163910815022152
Offset: 0

Views

Author

Keywords

Comments

A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).

References

  • F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of A063841.
Cf. A053465.

Programs

  • Mathematica
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i-1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Array[a, 16, 0] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 25 2018
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A004102(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024

Formula

Euler transform of A053465. - Andrew Howroyd, Sep 25 2018

Extensions

More terms from Vladeta Jovovic, Jan 06 2000
a(0)=1 prepended and a(15) added by Andrew Howroyd, Sep 25 2018

A327084 Array read by descending antidiagonals: A(n,k) is the number of unoriented colorings of the edges of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 10, 11, 1, 5, 20, 66, 34, 1, 6, 35, 276, 792, 156, 1, 7, 56, 900, 10688, 25506, 1044, 1, 8, 84, 2451, 90005, 1601952, 2302938, 12346, 1, 9, 120, 5831, 533358, 43571400, 892341888, 591901884, 274668
Offset: 1

Views

Author

Robert A. Russell, Aug 19 2019

Keywords

Comments

An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n=2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Two unoriented colorings are the same if congruent; chiral pairs are counted as one.
A(n,k) is also the number of unoriented colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using up to k colors. Thus, A(2,k) is also the number of unoriented colorings of the vertices (0-dimensional simplices) of an equilateral triangle.

Examples

			Array begins with A(1,1):
  1  2   3     4     5      6       7       8        9       10 ...
  1  4  10    20    35     56      84     120      165      220 ...
  1 11  66   276   900   2451    5831   12496    24651    45475 ...
  1 34 792 10688 90005 533358 2437848 9156288 29522961 84293770 ...
  ...
For A(2,3) = 10, the nine achiral colorings are AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, and CCC. The chiral pair is ABC-ACB.
		

Crossrefs

Cf. A327083 (oriented), A327085 (chiral), A327086 (achiral), A327088 (exactly k colors), A325000 (vertices, facets), A337884 (faces, peaks), A337408 (orthotope edges, orthoplex ridges), A337412 (orthoplex edges, orthotope ridges).
Rows 1-4 are A000027, A000292, A063842(n-1), A063843.
Cf. A063841 (k-multigraphs on n nodes).

Programs

  • Mathematica
    CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *)
    CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}]
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]] == s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s,i], Null]]; s)
    CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p, -1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p, -1]]]
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[Total[pc[#] j^Total[CycleX[#]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d-n+1], {d,1,10}, {n,1,d}] // Flatten
    (* Using Fripertinger's exponent per Andrew Howroyd code in A063841: *)
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))]
    ex[v_] := Sum[GCD[v[[i]], v[[j]]], {i,2,Length[v]}, {j,i-1}] + Total[Quotient[v,2]]
    array[n_,k_] := Total[pc[#]k^ex[#] &/@ IntegerPartitions[n+1]]/(n+1)!
    Table[array[n,d-n+1], {d,10}, {n,d}] // Flatten
    (* Another program (translated from Andrew Howroyd's PARI code): *)
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i-1}] + Total[Quotient[v, 2]];
    T[n_, k_] := Module[{s = 0}, Do[s += permcount[p]*k^edges[p], {p, IntegerPartitions[n+1]}]; s/(n+1)!];
    Table[T[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 08 2021 *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    T(n, k) = {my(s=0); forpart(p=n+1, s+=permcount(p)*k^edges(p)); s/(n+1)!} \\ Andrew Howroyd, Sep 06 2019
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A327084_T(n,k): return int(sum(Fraction(k**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n+1))) # Chai Wah Wu, Jul 09 2024

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = Sum_{j=1..(n+1)*n/2} A327088(n,j) * binomial(k,j).
A(n,k) = A327083(n,k) - A327085(n,k) = (A327083(n,k) + A327086(n,k)) / 2 = A327085(n,k) + A327086(n,k).
A(n,k) = A063841(n+1,k-1).

A331359 Number of unoriented colorings of the edges of a tesseract with n available colors.

Original entry on oeis.org

1, 11251322, 4825746875682, 48038446526132256, 60632984344185045000, 20725680132763499134746, 2876113738439693827763387, 206323339930086669420462592, 8941884949194537156253481511
Offset: 1

Views

Author

Robert A. Russell, Jan 14 2020

Keywords

Comments

A tesseract is a regular 4-dimensional orthotope or hypercube with 16 vertices and 32 edges. Its Schläfli symbol is {4,3,3}. Two unoriented colorings are the same if congruent; chiral pairs are counted as one. Also the number of unoriented colorings of the triangular faces of a regular 4-dimensional orthoplex {3,3,4} with n available colors.

Crossrefs

Cf. A331358 (oriented), A331360 (chiral), A331361 (achiral).
Cf. A063843 (simplex), A331355 (orthoplex), A338953 (24-cell), A338965 (120-cell, 600-cell).

Programs

  • Mathematica
    Table[(48n^4 + 64n^6 + 164n^8 + 32n^12 + 35n^16 + 24n^18 + 16n^20 + n^32)/384, {n, 1, 25}]

Formula

a(n) = (48*n^4 + 64*n^6 + 164*n^8 + 32*n^12 + 35*n^16 + 24*n^18 + 16*n^20 + n^32) / 384.
a(n) = C(n,1) + 11251320*C(n,2) + 4825713121719*C(n,3) + 48019143606137456*C(n,4) + 60392840368910627325*C(n,5) + 20362602706881512104770*C(n,6) + 2732305589004849709507320*C(n,7) + 183891356981584237730865120*C(n,8) + 7186781660980022442696996900*C(n,9) + 179941570950595830458653229400*C(n,10) + 3092495918800698593432175049200*C(n,11) + 38355721930679608007610435655200*C(n,12) + 356388702642082232961224416430400*C(n,13) + 2552262270629849366778056301033600*C(n,14) + 14398742619650679721666540905600000*C(n,15) + 65081946248235516086688061276416000*C(n,16) + 238774230958640327164289928460608000*C(n,17) + 718111905257279424242461614311808000*C(n,18) + 1783226074397879202567353905547520000*C(n,19) + 3674025240535453233878734112386560000*C(n,20) + 6297428247692138525542940292326400000*C(n,21) + 8984640042458034573900227275929600000*C(n,22) + 10651431202956156039912718487654400000*C(n,23) + 10448264801973961157855568414105600000*C(n,24) + 8418935641672774875938561280000000000*C(n,25) + 5510766716064148076659382317056000000*C(n,26) + 2882400456553496466714071801856000000*C(n,27) + 1175640370514915165746352603136000000*C(n,28) + 360177463966855890088916582400000000*C(n,29) + 77945658076061560043023564800000000*C(n,30) + 10621166594979816972895518720000000*C(n,31) + 685236554514826901477130240000000*C(n,32), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
a(n) = A331358(n) - A331360(n) = (A331358(n) - A331361(n)) / 2 = A331360(n) + A331361(n).

A063841 Table T(n,k) giving number of k-multigraphs on n nodes (n >= 1, k >= 0) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 10, 11, 1, 1, 5, 20, 66, 34, 1, 1, 6, 35, 276, 792, 156, 1, 1, 7, 56, 900, 10688, 25506, 1044, 1, 1, 8, 84, 2451, 90005, 1601952, 2302938, 12346, 1, 1, 9, 120, 5831, 533358, 43571400, 892341888, 591901884, 274668, 1
Offset: 1

Views

Author

N. J. A. Sloane, Aug 25 2001

Keywords

Comments

The first five rows admit the g.f. 1/(1-x), 1/(1-x)^2, 1/(1-x)^4 and those given in A063842, A063843. Is it known that the n-th row admits a rational g.f. with denominator (1-x)^A000124(n)? - M. F. Hasler, Jan 19 2012
T(n+1,k-1) is the number of unoriented ways to color the edges of a regular n-dimensional simplex using up to k colors. - Robert A. Russell, Aug 21 2019

Examples

			Table begins
===========================================================
n\k| 0    1       2         3           4             5
---|-------------------------------------------------------
1  | 1    1       1         1           1             1 ...
2  | 1    2       3         4           5             6 ...
3  | 1    4      10        20          35            56 ...
4  | 1   11      66       276         900          2451 ...
5  | 1   34     792     10688       90005        533358 ...
6  | 1  156   25506   1601952    43571400     661452084 ...
7  | 1 1044 2302938 892341888 95277592625 4364646955812 ...
...
T(3,2)=10 because there are 10 unlabeled graphs with 3 nodes with at most 2 edges connecting any pair.
(. . .),(.-. .),(.-.-.),(.-.-.-),(.=. .),(.=.=.),(.=.=.=),(.-.=.),(.-.-.=),(.=.=.-). - _Geoffrey Critzer_, Jan 23 2012
		

Crossrefs

Rows (4th and 5th) are listed in A063842, A063843.
Cf. A327084 (unoriented simplex edge colorings).

Programs

  • Mathematica
    (* This code gives the array T(n,k). *) Needs["Combinatorica`"]; Transpose[Table[Table[PairGroupIndex[SymmetricGroup[n],s]/.Table[s[i]->k+1, {i,0,Binomial[n,2]}], {n,1,7}], {k,0,6}]]//Grid (* Geoffrey Critzer, Jan 23 2012 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    T[n_, k_] := (s=0; Do[s += permcount[p]*(k+1)^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Table[T[n-k, k], {n, 1, 10}, {k, n-1, 0, -1}] // Flatten (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    T(n, k) = {my(s=0); forpart(p=n, s+=permcount(p)*(k+1)^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A063841_T(n,k): return int(sum(Fraction((k+1)**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024

Formula

T(n,k) = A327084(n-1,k+1) for n > 1. - Robert A. Russell, Aug 21 2019

Extensions

More terms from Vladeta Jovovic, Sep 03 2001

A331353 Number of achiral colorings of the edges (or triangular faces) of a regular 4-dimensional simplex with n available colors.

Original entry on oeis.org

1, 28, 387, 2784, 13125, 46836, 137543, 349952, 797769, 1667500, 3248971, 5973408, 10459917, 17571204, 28479375, 44742656, 68393873, 102041532, 148984339, 213340000, 300189141, 415735188, 567481047, 764423424
Offset: 1

Views

Author

Robert A. Russell, Jan 14 2020

Keywords

Comments

A 4-dimensional simplex has 5 vertices and 10 edges. Its Schläfli symbol is {3,3,3}. An achiral coloring is identical to its reflection,
There are 60 elements in the automorphism group of the 4-dimensional simplex that are not in its rotation group. Each is an odd permutation of the vertices and can be associated with a partition of 5 based on the conjugacy group of the permutation. The first formula is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Odd Cycle Indices
41 30 x_2^1x_4^2
32 20 x_1^1x_3^1x_6^1
2111 10 x_1^4x_2^3

Crossrefs

Cf. A331350 (oriented), A063843 (unoriented), A331352 (chiral).
Other polychora: A331361 (8-cell), A331357 (16-cell), A338955 (24-cell), A338967 (120-cell, 600-cell).
Row 4 of A327086 (simplex edges and ridges) and A337886 (simplex faces and peaks).

Programs

  • Mathematica
    Table[(5 n^3 + n^7)/6, {n, 1, 25}]
  • PARI
    Vec(x*(1 + 20*x + 191*x^2 + 416*x^3 + 191*x^4 + 20*x^5 + x^6) / (1 - x)^8 + O(x^25)) \\ Colin Barker, Jan 15 2020

Formula

a(n) = (5*n^3 + n^7) / 6.
a(n) = C(n,1) + 26*C(n,2) + 306*C(n,3) + 1400*C(n,4) + 2800*C(n,5) + 2520*C(n,6) + 840*C(n,7), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
a(n) = 2*A063843(n) - A331350(n) = A331350(n) - 2*A331352(n) = A063843(n) - A331352(n).
From Colin Barker, Jan 15 2020: (Start)
G.f.: x*(1 + 20*x + 191*x^2 + 416*x^3 + 191*x^4 + 20*x^5 + x^6) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

A331355 Number of unoriented colorings of the edges of a regular 4-dimensional orthoplex with n available colors.

Original entry on oeis.org

1, 49127, 740360358, 733776248840, 155261523065875, 12340612271439081, 498926608780739307, 12298018390569089088, 207726683413584244680, 2604177120221402303875, 25650403577338260144611, 207023317470352041578712
Offset: 1

Views

Author

Robert A. Russell, Jan 14 2020

Keywords

Comments

A regular 4-dimensional orthoplex (also hyperoctahedron or cross polytope) has 8 vertices and 24 edges. Its Schläfli symbol is {3,3,4}. Two unoriented colorings are the same if congruent; chiral pairs are counted as one. Also the number of unoriented colorings of the square faces of a tesseract {4,3,3} with n available colors.

Crossrefs

Cf. A331354 (oriented), A331356 (chiral), A331357 (achiral).
Other polychora: A063843 (5-cell), A331359 (8-cell), A338953 (24-cell), A338965 (120-cell, 600-cell).
Row 4 of A337412 (orthoplex edges, orthotope ridges) and A337888 (orthotope faces, orthoplex peaks).

Programs

  • Mathematica
    Table[(48 n^3 + 64 n^4 + 44 n^6 + 84 n^7 + 56 n^8 + 12 n^9 + 5 n^12 +
        36 n^13 + 18 n^14 + 12 n^15 + 4 n^18 + n^24)/384, {n, 1, 25}]

Formula

a(n) = (48*n^3 + 64*n^4 + 44*n^6 + 84*n^7 + 56*n^8 + 12*n^9 + 5*n^12 +
36*n^13 + 18*n^14 + 12*n^15 + 4*n^18 + n^24) / 384.
a(n) = C(n,1) + 49125*C(n, 2) + 740212980*C(n, 3) + 730815102166*C(n, 4) + 151600044933990*C(n, 5) + 11420034970306170*C(n, 6) + 415777158607920585*C(n, 7) + 8643499341510394200*C(n, 8) + 113988734942055623055*C(n, 9) + 1023002477284840979850*C(n, 10) + 6559265715033958749900*C(n, 11) + 31097943476763200314200*C(n, 12) + 111710751446923209781200*C(n, 13) + 309231173588248964052000*C(n, 14) + 666846649590586048584000*C(n, 15) + 1126625898539640346848000*C(n, 16) + 1492173541849975272288000*C(n, 17) + 1541987122059614438208000*C(n, 18) + 1229356526029003532160000*C(n, 19) + 741102367008078915840000*C(n, 20) + 326583680209195368960000*C(n, 21) + 99234043419574103040000*C(n, 22) + 18581137031073576960000*C(n, 23) + 1615751046180311040000*C(n, 24), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
a(n) = A331354(n) - A331356(n) = (A331354(n) + A331357(n)) / 2 = A331356(n) + A331357(n).

A331350 Number of oriented colorings of the edges (or triangular faces) of a regular 4-dimensional simplex with n available colors.

Original entry on oeis.org

1, 40, 1197, 18592, 166885, 1019880, 4738153, 17962624, 58248153, 166920040, 432738229, 1032709536, 2298857821, 4822806184, 9613704465, 18329410048, 33605960689, 59516325288, 102196242685, 170682720160, 278019522837
Offset: 1

Views

Author

Robert A. Russell, Jan 14 2020

Keywords

Comments

A 4-dimensional simplex has 5 vertices and 10 edges. Its Schläfli symbol is {3,3,3}. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.
There are 60 elements in the rotation group of the 4-dimensional simplex. Each is an even permutation of the vertices and can be associated with a partition of 5 based on the conjugacy group of the permutation. The first formula is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Even Cycle Indices
5 24 x_5^2
311 20 x_1^1x_3^3
221 15 x_1^2x_2^4
11111 1 x_1^10

Crossrefs

Cf. A063843 (unoriented), A331352 (chiral), A331353 (achiral).
Other polychora: A331358 (8-cell), A331354 (16-cell), A338952 (24-cell), A338964 (120-cell, 600-cell).
Row 4 of A327083 (simplex edges and facets) and A337883 (simplex faces and peaks).

Programs

  • Mathematica
    Table[(24n^2 + 20n^4 + 15n^6 + n^10)/60, {n, 1, 25}]

Formula

a(n) = (24*n^2 + 20*n^4 + 15*n^6 + n^10) / 60.
a(n) = C(n,1) + 38*C(n,2) + 1080*C(n,3) + 14040*C(n,4) + 85500*C(n,5) + 274104*C(n,6) + 493920*C(n,7) + 504000*C(n,8) + 272160*C(n,9) + 60480*C(n,10), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
a(n) = A063843(n) + A331352(n) = 2*A063843(n) - A331353(n) = 2*A331352(n) + A331353(n).
Showing 1-10 of 20 results. Next