cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A000088 Number of simple graphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864, 165091172592, 50502031367952, 29054155657235488, 31426485969804308768, 64001015704527557894928, 245935864153532932683719776, 1787577725145611700547878190848, 24637809253125004524383007491432768
Offset: 0

Views

Author

Keywords

Comments

Euler transform of the sequence A001349.
Also, number of equivalence classes of sign patterns of totally nonzero symmetric n X n matrices.

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 430.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 519.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 240.
  • Thomas Boyer-Kassem, Conor Mayo-Wilson, Scientific Collaboration and Collective Knowledge: New Essays, New York, Oxford University Press, 2018, see page 47.
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 54.
  • Lupanov, O. B. Asymptotic estimates of the number of graphs with n edges. (Russian) Dokl. Akad. Nauk SSSR 126 1959 498--500. MR0109796 (22 #681).
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums of A002494.
Cf. A000666 (graphs with loops), A001349 (connected graphs), A002218, A006290, A003083.
Column k=1 of A063841.
Column k=2 of A309858.
Row sums of A008406.
Cf. also A000055, A000664.
Partial sums are A006897.

Programs

  • Maple
    # To produce all graphs on 4 nodes, for example:
    with(GraphTheory):
    L:=[NonIsomorphicGraphs](4,output=graphs,outputform=adjacency): # N. J. A. Sloane, Oct 07 2013
    seq(GraphTheory[NonIsomorphicGraphs](n,output=count),n=1..10); # Juergen Will, Jan 02 2018
    # alternative Maple program:
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
          +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
           add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    a:= n-> b(n$2, []):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    Needs["Combinatorica`"]
    Table[NumberOfGraphs[n], {n, 0, 19}] (* Geoffrey Critzer, Mar 12 2011 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *)
    b[n_, i_, l_] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[Ceiling[(p[[j]]-1 )/2]+Sum[GCD[p[[k]], p[[j]]], {k, 1, j-1}], {j, 1, Length[p]}]][Join[l, Table[1, {n}]]]), Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]];
    a[n_] := b[n, n, {}];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2019, after Alois P. Heinz *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000088(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 02 2024
  • Sage
    def a(n):
        return len(list(graphs(n)))
    # Ralf Stephan, May 30 2014
    

Formula

a(n) = 2^binomial(n, 2)/n!*(1+(n^2-n)/2^(n-1)+8*n!/(n-4)!*(3*n-7)*(3*n-9)/2^(2*n)+O(n^5/2^(5*n/2))) (see Harary, Palmer reference). - Vladeta Jovovic and Benoit Cloitre, Feb 01 2003
a(n) = 2^binomial(n, 2)/n!*[1+2*n$2*2^{-n}+8/3*n$3*(3n-7)*2^{-2n}+64/3*n$4*(4n^2-34n+75)*2^{-3n}+O(n^8*2^{-4*n})] where n$k is the falling factorial: n$k = n(n-1)(n-2)...(n-k+1). - Keith Briggs, Oct 24 2005
From David Pasino (davepasino(AT)yahoo.com), Jan 31 2009: (Start)
a(n) = a(n, 2), where a(n, t) is the number of t-uniform hypergraphs on n unlabeled nodes (cf. A000665 for t = 3 and A051240 for t = 4).
a(n, t) = Sum_{c : 1*c_1+2*c_2+...+n*c_n=n} per(c)*2^f(c), where:
..per(c) = 1/(Product_{i=1..n} c_i!*i^c_i);
..f(c) = (1/ord(c)) * Sum_{r=1..ord(c)} Sum_{x : 1*x_1+2*x_2+...+t*x_t=t} Product_{k=1..t} binomial(y(r, k; c), x_k);
..ord(c) = lcm{i : c_i>0};
..y(r, k; c) = Sum_{s|r : gcd(k, r/s)=1} s*c_(k*s) is the number of k-cycles of the r-th power of a permutation of type c. (End)
a(n) ~ 2^binomial(n,2)/n! [see Flajolet and Sedgewick p. 106, Gross and Yellen, p. 519, etc.]. - N. J. A. Sloane, Nov 11 2013
For asymptotics see also Lupanov 1959, 1960, also Turner and Kautz, p. 18. - N. J. A. Sloane, Apr 08 2014
a(n) = G(1) where G(z) = (1/n!) Sum_g det(I-g z^2)/det(I-g z) and g runs through the natural matrix n X n representation of the pair group A^2_n (for A^2_n see F. Harary and E. M. Palmer, Graphical Enumeration, page 83). - Leonid Bedratyuk, May 02 2015
From Keith Briggs, Jun 24 2016: (Start)
a(n) = 2^binomial(n,2)/n!*(
1+
2^( -n + 1)*n$2+
2^(-2*n + 3)*n$3*(n-7/3)+
2^(-3*n + 6)*n$4*(4*n^2/3 - 34*n/3 + 25) +
2^(-4*n + 10)*n$5*(8*n^3/3 - 142*n^2/3 + 2528*n/9 - 24914/45) +
2^(-5*n + 15)*n$6*(128*n^4/15 - 2296*n^3/9 + 25604*n^2/9 - 630554*n/45 + 25704) +
2^(-6*n + 21)*n$7*(2048*n^5/45 - 18416*n^4/9 + 329288*n^3/9 - 131680816*n^2/405 + 193822388*n/135 - 7143499196/2835) + ...),
where n$k is the falling factorial: n$k = n(n-1)(n-2)...(n-k+1), using the method of Wright 1969.
(End)
a(n) = 1/n*Sum_{k=1..n} a(n-k)*A003083(k). - Andrey Zabolotskiy, Aug 11 2020

Extensions

Harary gives an incorrect value for a(8); compare A007149

A063843 Number of n-multigraphs on 5 nodes.

Original entry on oeis.org

0, 1, 34, 792, 10688, 90005, 533358, 2437848, 9156288, 29522961, 84293770, 217993600, 519341472, 1154658869, 2420188694, 4821091920, 9187076352, 16837177281, 29809183410, 51172613512, 85448030080, 139159855989, 221554769150, 345523218536, 528767663040
Offset: 0

Views

Author

N. J. A. Sloane, Aug 25 2001

Keywords

Comments

Equivalently, number of ways to color edges of complete graph on 5 nodes with n colors, under action of symmetric group S_5, of order 120, with cycle index on edges given by (1/120)*(24*x5^2 + 30*x2*x4^2 + 20*x3^3*x1 + 20*x3*x6*x1 + 15*x1^2*x2^4 + 10*x1^4*x2^3 + x1^10). Setting all x_i = n gives the sequence.
Number of vertex colorings of the Petersen graph. Marko Riedel, Mar 24 2016
Number of unoriented colorings of the 10 triangular edges or triangular faces of a pentachoron, Schläfli symbol {3,3,3}, using n or fewer colors. Also called a 5-cell or 4-simplex. - Robert A. Russell, Oct 17 2020

Crossrefs

Cf. A063842. A row of A063841.
Cf. A331350 (oriented), A331352 (chiral), A331353 (achiral), A000389(n+4) (vertices and facets)
Other polychora: A331359 (8-cell), A331355 (16-cell), A338953 (24-cell), A338965 (120-cell, 600-cell).
Row 4 of A327084 (simplex edges and ridges) and A337884 (simplex faces and peaks).

Programs

  • Maple
    f:=n-> 1/120*(24*n^2+50*n^3+20*n^4+15*n^6+10*n^7+n^10);
  • Mathematica
    Table[(24n^2+50n^3+20n^4+15n^6+10n^7+n^10)/120,{n,0,30}] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,1,34,792,10688,90005,533358,2437848,9156288,29522961,84293770},30] (* Harvey P. Dale, Oct 20 2012 *)
  • PARI
    a(n)=n^2*(n^8+10*n^5+15*n^4+20*n^2+50*n+24)/120 \\ Charles R Greathouse IV, Jan 20 2012

Formula

a(n) = (1/120)*(24*n^2+50*n^3+20*n^4+15*n^6+10*n^7+n^10).
a(n+1) = (1/5!)*(n^10 + 10*n^9 + 45*n^8 + 130*n^7 + 295*n^6 + 552*n^5 + 805*n^4 + 900*n^3 + 774*n^2 + 448*n + 120).
G.f. = (1 + 23*x + 473*x^2 + 3681*x^3 + 10717*x^4 + 11221*x^5 + 3779*x^6 + 339*x^7 + 6*x^8)/(1-x)^11. - M. F. Hasler, Jan 19 2012
a(0)=0, a(1)=1, a(2)=34, a(3)=792, a(4)=10688, a(5)=90005, a(6)=533358, a(7)=2437848, a(8)=9156288, a(9)=29522961, a(10)=84293770, a(n)= 11*a(n-1)- 55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+ 330*a(n-7)- 165*a(n-8)+55*a(n-9)-11*a(n-10)+a(n-11). - Harvey P. Dale, Oct 20 2012
From Robert A. Russell, Oct 17 2020: (Start)
a(n) = A331350(n) - A331352(n) = (A331350(n) + A331353(n)) / 2 = A331352(n) + A331353(n).
a(n) = 1*C(n,1) + 32*C(n,2) + 693*C(n,3) + 7720*C(n,4) + 44150*C(n,5) + 138312*C(n,6) + 247380*C(n,7) + 252000*C(n,8) + 136080*C(n,9) + 30240*C(n,10), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors. (End)

Extensions

More terms from Vladeta Jovovic, Sep 02 2001

A004102 Number of signed graphs with n nodes. Also number of 2-multigraphs on n nodes.

Original entry on oeis.org

1, 1, 3, 10, 66, 792, 25506, 2302938, 591901884, 420784762014, 819833163057369, 4382639993148435207, 64588133532185722290294, 2638572375815762804156666529, 300400208094064113266621946833097, 95776892467035669509813163910815022152
Offset: 0

Views

Author

Keywords

Comments

A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).

References

  • F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of A063841.
Cf. A053465.

Programs

  • Mathematica
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i-1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Array[a, 16, 0] (* Jean-François Alcover, Aug 17 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 25 2018
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A004102(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024

Formula

Euler transform of A053465. - Andrew Howroyd, Sep 25 2018

Extensions

More terms from Vladeta Jovovic, Jan 06 2000
a(0)=1 prepended and a(15) added by Andrew Howroyd, Sep 25 2018

A327084 Array read by descending antidiagonals: A(n,k) is the number of unoriented colorings of the edges of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 10, 11, 1, 5, 20, 66, 34, 1, 6, 35, 276, 792, 156, 1, 7, 56, 900, 10688, 25506, 1044, 1, 8, 84, 2451, 90005, 1601952, 2302938, 12346, 1, 9, 120, 5831, 533358, 43571400, 892341888, 591901884, 274668
Offset: 1

Views

Author

Robert A. Russell, Aug 19 2019

Keywords

Comments

An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n=2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Two unoriented colorings are the same if congruent; chiral pairs are counted as one.
A(n,k) is also the number of unoriented colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using up to k colors. Thus, A(2,k) is also the number of unoriented colorings of the vertices (0-dimensional simplices) of an equilateral triangle.

Examples

			Array begins with A(1,1):
  1  2   3     4     5      6       7       8        9       10 ...
  1  4  10    20    35     56      84     120      165      220 ...
  1 11  66   276   900   2451    5831   12496    24651    45475 ...
  1 34 792 10688 90005 533358 2437848 9156288 29522961 84293770 ...
  ...
For A(2,3) = 10, the nine achiral colorings are AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, and CCC. The chiral pair is ABC-ACB.
		

Crossrefs

Cf. A327083 (oriented), A327085 (chiral), A327086 (achiral), A327088 (exactly k colors), A325000 (vertices, facets), A337884 (faces, peaks), A337408 (orthotope edges, orthoplex ridges), A337412 (orthoplex edges, orthotope ridges).
Rows 1-4 are A000027, A000292, A063842(n-1), A063843.
Cf. A063841 (k-multigraphs on n nodes).

Programs

  • Mathematica
    CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *)
    CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}]
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]] == s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s,i], Null]]; s)
    CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p, -1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p, -1]]]
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[Total[pc[#] j^Total[CycleX[#]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d-n+1], {d,1,10}, {n,1,d}] // Flatten
    (* Using Fripertinger's exponent per Andrew Howroyd code in A063841: *)
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))]
    ex[v_] := Sum[GCD[v[[i]], v[[j]]], {i,2,Length[v]}, {j,i-1}] + Total[Quotient[v,2]]
    array[n_,k_] := Total[pc[#]k^ex[#] &/@ IntegerPartitions[n+1]]/(n+1)!
    Table[array[n,d-n+1], {d,10}, {n,d}] // Flatten
    (* Another program (translated from Andrew Howroyd's PARI code): *)
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i-1}] + Total[Quotient[v, 2]];
    T[n_, k_] := Module[{s = 0}, Do[s += permcount[p]*k^edges[p], {p, IntegerPartitions[n+1]}]; s/(n+1)!];
    Table[T[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 08 2021 *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    T(n, k) = {my(s=0); forpart(p=n+1, s+=permcount(p)*k^edges(p)); s/(n+1)!} \\ Andrew Howroyd, Sep 06 2019
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A327084_T(n,k): return int(sum(Fraction(k**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n+1))) # Chai Wah Wu, Jul 09 2024

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = Sum_{j=1..(n+1)*n/2} A327088(n,j) * binomial(k,j).
A(n,k) = A327083(n,k) - A327085(n,k) = (A327083(n,k) + A327086(n,k)) / 2 = A327085(n,k) + A327086(n,k).
A(n,k) = A063841(n+1,k-1).

A327083 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the edges of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 11, 12, 1, 5, 24, 87, 40, 1, 6, 45, 416, 1197, 184, 1, 7, 76, 1475, 18592, 42660, 1296, 1, 8, 119, 4236, 166885, 3017600, 4223313, 17072, 1, 9, 176, 10437, 1019880, 85025050, 1748176768, 1139277096, 424992
Offset: 1

Views

Author

Robert A. Russell, Aug 19 2019

Keywords

Comments

An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n-2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.
A(n,k) is also the number of oriented colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using up to k colors. Thus, A(2,k) is also the number of oriented colorings of the vertices (0-dimensional simplices) of an equilateral triangle.

Examples

			Array begins with A(1,1):
  1  2    3     4      5       6       7        8        9        10 ...
  1  4   11    24     45      76     119      176      249       340 ...
  1 12   87   416   1475    4236   10437    22912    45981     85900 ...
  1 40 1197 18592 166885 1019880 4738153 17962624 58248153 166920040 ...
  ...
For A(2,3) = 11, the nine achiral colorings are AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, and CCC. The chiral pair is ABC-ACB.
		

Crossrefs

Cf. A327084 (unoriented), A327085 (chiral), A327086 (achiral), A327087 (exactly k colors), A324999 (vertices, facets), A337883 (faces, peaks), A337407 (orthotope edges, orthoplex ridges), A337411 (orthoplex edges, orthotope ridges).
Rows 1-4 are A000027, A006527, A046023, A331350.
Column 2 is A218144(n+1).

Programs

  • Mathematica
    CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *)
    CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}]
    compress[x : {{, } ...}] := (s = Sort[x]; For[i=Length[s], i>1, i-=1, If[s[[i,1]] == s[[i-1,1]], s[[i-1,2]]+=s[[i,2]]; s=Delete[s,i], Null]]; s)
    CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p,-1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p,-1]]]
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (*partition count*)
    row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#,2]]], pc[#] j^Total[CycleX[#]][[2]], 0] & /@ IntegerPartitions[n+1]]/((n+1)!/2)]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d-n+1], {d,1,10}, {n,1,d}] // Flatten
    (* Using Fripertinger's exponent per Andrew Howroyd's code in A063841: *)
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))]
    ex[v_] := Sum[GCD[v[[i]], v[[j]]], {i,2,Length[v]}, {j,i-1}] + Total[Quotient[v,2]]
    array[n_,k_] := Total[If[EvenQ[Total[1-Mod[#,2]]], pc[#]k^ex[#], 0] &/@ IntegerPartitions[n+1]]/((n+1)!/2)
    Table[array[n,d-n+1], {d,10}, {n,d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = Sum_{j=1..(n+1)*n/2} A327087(n,j) * binomial(k,j).
A(n,k) = A327084(n,k) + A327085(n,k) = 2*A327084(n,k) - A327086(n,k) = 2*A327085(n,k) + A327086(n,k).

A327085 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the edges of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 4, 21, 6, 0, 0, 10, 140, 405, 28, 0, 0, 20, 575, 7904, 17154, 252, 0, 0, 35, 1785, 76880, 1415648, 1920375, 4726, 0, 0, 56, 4606, 486522, 41453650, 855834880, 547375212, 150324, 0
Offset: 1

Views

Author

Robert A. Russell, Aug 19 2019

Keywords

Comments

An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n-2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. The chiral colorings of its edges come in pairs, each the reflection of the other.
A(n,k) is also the number of chiral pairs of colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using up to k colors. Thus, A(2,k) is also the number of chiral pairs of colorings of the vertices (0-dimensional simplices) of an equilateral triangle.

Examples

			Array begins with A(1,1):
  0 0   0    0     0      0       0       0        0        0         0 ...
  0 0   1    4    10     20      35      56       84      120       165 ...
  0 1  21  140   575   1785    4606   10416    21330    40425     71995 ...
  0 6 405 7904 76880 486522 2300305 8806336 28725192 82626270 214744629 ...
  ...
For A(2,3) = 1, the chiral pair is ABC-ACB.
		

Crossrefs

Cf. A327083 (oriented), A327084 (unoriented), A327086 (achiral), A327089 (exactly k colors), A325000(n,k-n) (vertices, facets), A337885 (faces, peaks), A337409 (orthotope edges, orthoplex ridges), A337413 (orthoplex edges, orthotope ridges).
Rows 1-4 are A000004, A000292(n-2), A337899, A331352.

Programs

  • Mathematica
    CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *)
    CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}]
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]] == s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s,i], Null]]; s)
    CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p, -1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p, -1]]]
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#,2]]], 1, -1] pc[#] j^Total[CycleX[#]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d-n+1], {d,1,10}, {n,1,d}] // Flatten
    (* Using Fripertinger's exponent per Andrew Howroyd's code in A063841: *)
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))]
    ex[v_] := Sum[GCD[v[[i]], v[[j]]], {i,2,Length[v]}, {j,i-1}] + Total[Quotient[v,2]]
    array[n_,k_] := Total[If[EvenQ[Total[1-Mod[#,2]]],1,-1] pc[#]k^ex[#] &/@ IntegerPartitions[n+1]]/(n+1)!
    Table[array[n,d-n+1], {d,10}, {n,d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = Sum_{j=1..(n+1)*n/2} A327089(n,j) * binomial(k,j).
A(n,k) = A327083(n,k) - A327084(n,k) = (A327083(n,k) - A327086(n,k)) / 2 = A327084(n,k) - A327086(n,k).

A327086 Array read by descending antidiagonals: A(n,k) is the number of achiral colorings of the edges of a regular n-dimensional simplex using up to k colors.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 10, 1, 5, 16, 45, 28, 1, 6, 25, 136, 387, 128, 1, 7, 36, 325, 2784, 8352, 792, 1, 8, 49, 666, 13125, 186304, 382563, 7620, 1, 9, 64, 1225, 46836, 2117750, 36507008, 44526672, 124344
Offset: 1

Views

Author

Robert A. Russell, Aug 19 2019

Keywords

Comments

An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n-2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. An achiral coloring is identical to its reflection.
A(n,k) is also the number of achiral colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using up to k colors. Thus, A(2,k) is also the number of achiral colorings of the vertices (0-dimensional simplices) of an equilateral triangle.

Examples

			Array begins with A(1,1):
  1  2   3    4     5     6      7      8      9      10      11      12 ...
  1  4   9   16    25    36     49     64     81     100     121     144 ...
  1 10  45  136   325   666   1225   2080   3321    5050    7381   10440 ...
  1 28 387 2784 13125 46836 137543 349952 797769 1667500 3248971 5973408 ...
  ...
For A(2,3) = 9, the colorings are AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, and CCC.
		

Crossrefs

Cf. A327083 (oriented), A327084 (unoriented), A327085 (chiral), A327090 (exactly k colors), A325001 (vertices, facets), A337886 (faces, peaks), A337410 (orthotope edges, orthoplex ridges), A337414 (orthoplex edges, orthotope ridges).
Rows 1-4 are A000027, A000290, A037270, A331353.

Programs

  • Mathematica
    CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *)
    CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}]
    compress[x : {{, } ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i,1]] == s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s,i], Null]]; s)
    CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p, -1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p, -1]]]
    pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#,2]]], 0, pc[#] j^Total[CycleX[#]][[2]]] & /@ IntegerPartitions[n+1]]/((n+1)!/2)]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d-n+1], {d,1,10}, {n,1,d}] // Flatten
    (* Using Fripertinger's exponent per Andrew Howroyd's code in A063841: *)
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))]
    ex[v_] := Sum[GCD[v[[i]], v[[j]]], {i,2,Length[v]}, {j,i-1}] + Total[Quotient[v,2]]
    array[n_,k_] := Total[If[OddQ[Total[1-Mod[#,2]]], pc[#]k^ex[#], 0] &/@ IntegerPartitions[n+1]]/((n+1)!/2)
    Table[array[n,d-n+1], {d,10}, {n,d}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.
A(n,k) = Sum_{j=1..(n+1)*n/2} A327090(n,j) * binomial(k,j).
A(n,k) = 2*A327084(n,k) - A327083(n,k) = A327083(n,k) - 2*A327085(n,k) = A327084(n,k) - A327085(n,k).

A053400 Number of 3-multigraphs on n nodes.

Original entry on oeis.org

1, 4, 20, 276, 10688, 1601952, 892341888, 1799786093088, 13042490003160192, 341378170022783017472, 32526326484972756063585792, 11367103329997359707194173746176, 14669222110846093400698801891700529152
Offset: 1

Views

Author

Vladeta Jovovic, Jan 06 2000

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY,1973.

Crossrefs

Column k=3 of A063841.
Cf. A004102.

Programs

  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A053400(n): return int(sum(Fraction(1<<(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())<<1),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024

A063842 Number of colorings of K_4 using at most n colors.

Original entry on oeis.org

1, 11, 66, 276, 900, 2451, 5831, 12496, 24651, 45475, 79376, 132276, 211926, 328251, 493725, 723776, 1037221, 1456731, 2009326, 2726900, 3646776, 4812291, 6273411, 8087376, 10319375, 13043251, 16342236, 20309716, 25050026, 30679275, 37326201, 45133056
Offset: 0

Views

Author

N. J. A. Sloane, Aug 25 2001

Keywords

Comments

a(n-1) is the number of unoriented ways to color the edges of a regular tetrahedron with up to n colors.

Crossrefs

A row of A063841. Cf. A063843.
A327084(3,n) = a(n-1) (unoriented simplex edge colorings)

Programs

  • Magma
    [1/24*(n^6+6*n^5+24*n^4+56*n^3+83*n^2+70*n+24): n in [0..35]]; // Vincenzo Librandi, Jul 21 2013
  • Mathematica
    Needs["Combinatorica`"]
    Table[Total[Table[CycleIndex[KSubsetGroup[GraphData[{4,k},"Automorphisms"],GraphData[{4,k},"EdgeIndices"]],s],{k,1,11}]]/.Table[s[i] -> n,{i,1,4}],{n,0,30}]  (* Geoffrey Critzer, Oct 22 2012 *)
    CoefficientList[Series[(1 + 3 x + 7 x^2 + 3 x^3 + x^4) (1 + x) / (1 - x)^7, {x, 0, 35}], x] (* Vincenzo Librandi, Jul 21 2013 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,11,66,276,900,2451,5831},40] (* Harvey P. Dale, Sep 10 2023 *)

Formula

a(n) = (1/4!)*(n^6 + 6*n^5 + 24*n^4 + 56*n^3 + 83*n^2 + 70*n + 24).
G.f.: (1 + 3*x + 7*x^2 + 3*x^3 + x^4)*(1+x)/(1-x)^7. - M. F. Hasler, Jan 19 2012

Extensions

More terms from Vladeta Jovovic, Sep 02 2001

A053420 Number of 4-multigraphs on n nodes.

Original entry on oeis.org

1, 5, 35, 900, 90005, 43571400, 95277592625, 925609100039625, 40119721052610123750, 7833164300852979350336250, 6953552738579427778531249187500, 28293472829338822230349054996265275000, 531350037528849507720092485196308155336875000
Offset: 1

Views

Author

Vladeta Jovovic, Jan 11 2000

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.

Crossrefs

Column k=4 of A063841.

Programs

  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A053420(n): return int(sum(Fraction(5**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024

Extensions

Terms a(12) and beyond from Andrew Howroyd, Oct 22 2017
Showing 1-10 of 11 results. Next