cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331365 Least k whose set of divisors contains exactly n Pythagorean quadruples, or 0 if no such k exists.

Original entry on oeis.org

42, 84, 168, 252, 672, 756, 420, 504, 2592, 1872, 840, 1008, 1512, 2940, 1680, 2016, 1260, 4536, 3360, 3024, 9450, 4620, 5880, 6552, 9504, 6930, 3780, 8400, 23184, 25704, 2520, 6300, 31752, 8820, 19800, 11088, 10920, 13104, 15840, 19152, 19656, 16632, 38016
Offset: 1

Views

Author

Michel Lagneau, May 03 2020

Keywords

Comments

a(n) == 0 (mod 6).

Examples

			a(3) = 168 because the set of the divisors {1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168} contains 3 Pythagorean quadruples {2, 3, 6, 7}, {4, 6, 12, 14} and {8, 12, 24, 28}.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 1 to 52 do :
    ii:=0:
    for q from 3 to 10^8 while(ii=0) do:
       d:=divisors(q):n0:=nops(d):it:=0:
        for i from 1 to n0-3 do:
         for j from i+1 to n0-2 do :
          for k from j+1 to n0-1 do:
          for l from k+1 to n0 do:
           if d[i]^2 + d[j]^2 + d[k]^2 = d[l]^2
            then
            it:=it+1:
            else
           fi:
          od:
         od:
        od:
       od:
        if it = n
         then
         ii:=1: printf(`%d %d \n`,n,q):
         else
        fi:
    od:
    od:
  • Mathematica
    upto = 38016; nq[n_] := If[Mod[n, 6] > 0, 0, Block[{t, u, v, c=0, d = Divisors@ n, m}, m = Length@ d; Do[t = d[[i]]^2 + d[[j]]^2; Do[u = t + d[[h]]^2; If[u > n^2, Break[]]; If[Mod[n^2, u] == 0 && IntegerQ[v = Sqrt@ u] && Mod[n, v] == 0, c++], {h, j+1, m-1}], {i, m-3}, {j, i+1, m-2}]; c]]; w = ParallelTable[ {nq@ n, n}, {n, 6 Range[ upto / 6]}]; t=0 Range@ Max[First /@ w]; Do[{q, x} = e; If[q > 0 && t[[q]] == 0, t[[q]] = x], {e, w}]; AppendTo[t, 0]; TakeWhile[t, # > 0 &] (* Giovanni Resta, May 04 2020 *)