cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A330893 Numbers whose set of divisors contains a Pythagorean quadruple.

Original entry on oeis.org

42, 72, 84, 126, 144, 156, 168, 198, 210, 216, 252, 288, 294, 312, 330, 336, 342, 360, 378, 396, 420, 432, 462, 468, 504, 546, 570, 576, 588, 594, 624, 630, 648, 660, 672, 684, 714, 720, 756, 780, 792, 798, 840, 864, 882, 900, 924, 930, 936, 966, 990, 1008, 1026
Offset: 1

Views

Author

Michel Lagneau, May 01 2020

Keywords

Comments

A Pythagorean quadruple (x, y, z, m) is a set of positive integers that satisfy x^2 + y^2 + z^2 = m^2.
The corresponding number of quadruples of the sequence is 1, 1, 2, 2, 2, 1, 3, 1, 3, 2, 4, 3, 2, 2, 1, 4, 1, 2, 3, 2, 7, 4, ... (see the sequence A330894).
It is interesting to note that each set of divisors of a(n) contains m primitive Pythagorean quadruples for some n, m = 1, 2,...
Examples:
- The set of divisors of a(1)= 42 contains only one primitive Pythagorean quadruple: (2, 3, 6, 7).
- The set of divisors of a(9) = 210 contains two primitive Pythagorean quadruples: (2, 3, 6, 7) and (2, 5, 14, 15).
- The set of divisors of a(21) = 420 contains three primitive Pythagorean quadruples: (2, 3, 6, 7), (2, 5, 14, 15) and (4, 5, 20, 21).
If k is in the sequence then so is m*k for m > 1.
Assumes the elements (x,y,z,m) in a quadruple are distinct divisors, as otherwise 6 would be in the sequence with 1^2+2^2+2^2=3^2. - Chai Wah Wu, Nov 16 2020

Examples

			168 is in the sequence because the set of divisors  {1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168} contains the Pythagorean quadruples {2, 3, 6, 7}, {4, 6, 12, 14} and {8, 12, 24, 28}. The first quadruple is primitive.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 3 to 1200 do :
       d:=divisors(n):n0:=nops(d):it:=0:
        for i from 1 to n0-3 do:
         for j from i+1 to n0-2 do :
          for k from j+1 to n0-1 do:
          for m from k+1 to n0 do:
           if d[i]^2 + d[j]^2 + d[k]^2 = d[m]^2
            then
            it:=it+1:
            else
           fi:
          od:
         od:
        od:
        od:
        if it>0 then
        printf(`%d, `,n):
        else fi:
       od:
  • Mathematica
    nq[n_] := If[ Mod[n,6]>0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[ t = d[[i]]^2 + d[[j]]^2; Do[u = t + d[[h]]^2; If[u > n^2, Break[]]; If[ Mod[n^2, u] == 0 && IntegerQ[v = Sqrt@ u] && Mod[n, v] == 0, c++], {h, j+1, m - 1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[ Range@ 1026, nq[#] > 0 &] (* Giovanni Resta, May 04 2020 *)
  • PARI
    isok(n) = {my(d=divisors(n), x); for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (issquare(d[i]^2 + d[j]^2 + d[k]^2, &x) && !(n % x), return(1)););););} \\ Michel Marcus, Nov 16 2020

Formula

a(n) == 0 (mod 6).

A335654 Numbers m such that the elements of all Pythagorean quadruples belonging to the set of divisors are exactly their first k divisors for some k.

Original entry on oeis.org

504, 1008, 1512, 1872, 2016, 3024, 3528, 3744, 4032, 4536, 5616, 6048, 6552, 7056, 7488, 8064, 9072, 9576, 10584, 11232, 12096, 13104, 13608, 14112, 14976, 16128, 16848, 17784, 18144, 19152, 19656, 21168, 21672, 22464, 23688, 24192, 24336, 24696, 26208, 27216
Offset: 1

Views

Author

Michel Lagneau, Jun 16 2020

Keywords

Comments

Members m in A330893 for which there exists a number k < tau(m) such that the elements of all Pythagorean quadruples included in the set of the divisors of m are the first k divisors of m.
Conjecture 1: a(n) == 0 (mod 72).
Conjecture 2: if the numbers m such that the elements of all Pythagorean quadruples contained in the set of divisors of m are exactly the first k divisors of m, then k = tau(m) - 4 or tau(m) - 5.
The corresponding k of the sequence are given by the sequence {b(n)} = {20, 26, 28, 25, 32, 36, 32, 31, 38, 36, 35, 44, 44, 41,...} and the sequence {c(n)} = {tau(a(n)) - b(n)} = {4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4,...}. We observe that c(n) = 4 or 5 (see the table in the link). For n = 1, 2,...,400, the statistic observed is 301 occurrences for the number 4 (75.25 %) and 99 occurrences for the number 5 (24.75 %). It is probable that Pr(4) tends to .75 and Pr(5) tends to .25 when n tends into infinity, where Pr(x) is the probability of the occurrence x.
Assumes the elements in the quadruple are distinct. Otherwise 6, 12, 18, 24, ... are also terms. For instance the divisors of 6 are 1,2,3,6 and 1^2 + 2^2 + 2^2 = 3^2. - Chai Wah Wu, Nov 16 2020

Examples

			504 is in the sequence because the divisors are  {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 18, 21, 24, 28, 36, 42, 56, 63, 72, 84, 126, 168, 252, 504} and the elements of the 8 Pythagorean quadruples belonging to the set of divisors of 504: (1, 4, 8, 9), (2, 3, 6, 7), (4, 6, 12, 14), (6, 9, 18, 21), (7, 28, 56, 63), (8, 12, 24, 28), (12, 18, 36, 42) and (24, 36, 72, 84) are the first 20 divisors of 504 with 20 = tau(504) - 4 = 24 - 4.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 6 by 6 to 20000 do :lst:={}:lst1:={}:
       d:=divisors(n):n0:=nops(d):
        for i from 1 to n0-3 do:
         for j from i+1 to n0-2 do :
          for k from j+1 to n0-1 do:
          for m from k+1 to n0 do:
           if d[i]^2 + d[j]^2 + d[k]^2 = d[m]^2
            then
            lst:=lst union {d[i]} union {d[j]} union {d[k]} union {d[m]}:
            else
           fi:
          od:
         od:
        od:
        od:
        n1:=nops(lst):
         for l from 1 to n1 do:
          lst1:= lst1 union {d[l]}:
         od:
        if lst=lst1 and lst<>{}
         then
         printf(`%d, `,n):
        else fi:
       od:

A337098 Least k whose set of divisors contains exactly n quadruples (x, y, z, w) such that x^3 + y^3 + z^3 = w^3, or 0 if no such k exists.

Original entry on oeis.org

60, 120, 240, 432, 960, 360, 3840, 1728, 2592, 720, 1800, 2520, 161700, 1440, 6840, 9000, 2160, 2880, 168300, 5040, 41472, 5760, 1520820, 4320, 7200, 11520, 119700, 10080, 682080, 10800, 8640, 14400, 27360, 12960, 373248, 20160, 61560, 17280, 28800, 55440, 171000, 21600
Offset: 1

Views

Author

Michel Lagneau, Aug 15 2020

Keywords

Comments

Observation: a(n) == 0 (mod 12).
Listing primitive tuples (w, x, y, z) enables to compute for some m how many such tuples are in its divisors using the lcm of such tuples. - David A. Corneth, Sep 26 2020

Examples

			a(3) = 240 because the set of the divisors {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} contains 3 quadruples {3, 4, 5, 6}, {6, 8, 10, 12} and {12, 16, 20, 24}. The first quadruple is primitive.
		

References

  • Y. Perelman, Solutions to x^3 + y^3 + z^3 = u^3, Mathematics can be Fun, pp. 316-9 Mir Moscow 1985.

Crossrefs

Programs

Extensions

a(13)-a(22) from Chai Wah Wu, Sep 25 2020
More terms from David A. Corneth, Sep 26 2020

A360946 Number of Pythagorean quadruples with inradius n.

Original entry on oeis.org

1, 3, 6, 10, 9, 19, 16, 25, 29, 27, 27, 56, 31, 51, 49, 61, 42, 91, 52, 71, 89, 86, 63, 142, 64, 95, 116, 132, 83, 153, 90, 144, 149, 133, 108, 238, 108, 162, 169, 171, 122, 284, 130, 219, 200, 196, 145, 340, 174, 201, 231, 239, 164, 364, 176, 314, 278, 256, 190, 399, 195, 281, 360, 330
Offset: 1

Views

Author

Keywords

Comments

A Pythagorean quadruple is a quadruple (a,b,c,d) of positive integers such that a^2 + b^2 + c^2 = d^2 with a <= b <= c. Its inradius is (a+b+c-d)/2, which is a positive integer.
For every positive integer n, there is at least one Pythagorean quadruple with inradius n.

Examples

			For n=1 the a(1)=1 solution is (1,2,2,3).
For n=2 the a(2)=3 solutions are (1,4,8,9), (2,3,6,7) and (2,4,4,6).
For n=3 the a(3)=6 solutions are (1,6,18,19), (2,5,14,15), (2,6,9,11), (3,4,12,13), (3,6,6,9) and (4,4,7,9).
		

References

  • J. M. Blanco Casado, J. M. Sánchez Muñoz, and M. A. Pérez García-Ortega, El Libro de las Ternas Pitagóricas, Preprint 2023.

Crossrefs

Programs

  • Mathematica
    n=50;
    div={};suc={};A={};
    Do[A=Join[A,{Range[1,(1+1/Sqrt[3])q]}],{q,1,n}];
    Do[suc=Join[suc,{Length[div]}];div={};For [i=1,i<=Length[Extract[A,q]],i++,div=Join[div,Intersection[Divisors[q^2+(Extract[Extract[A,q],i]-q)^2],Range[2(Extract[Extract[A,q],i]-q),Sqrt[q^2+(Extract[Extract[A,q],i]-q)^2]]]]],{q,1,n}];suc=Rest[Join[suc,{Length[div]}]];matriz={{"q"," ","cuaternas"}};For[j=1,j<=n,j++,matriz=Join[matriz,{{j," ",Extract[suc,j]}}]];MatrixForm[Transpose[matriz]]
Showing 1-4 of 4 results.