cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A337036 Numbers m such that the elements of all quadruples (x, y, z, w) satisfying x^3 + y^3 + z^3 = w^3 contained in the set of divisors of m are exactly the first k divisors of m for some k.

Original entry on oeis.org

720, 864, 1440, 1728, 2160, 2592, 2880, 3456, 4320, 5184, 5760, 6480, 6912, 7776, 8640, 10368, 11520, 12960, 13824, 15552, 17280, 19440, 20736, 23040, 23328, 25920, 27648, 31104, 34560, 38880, 41472, 46080, 46656, 51840, 55296, 58320, 62208, 69120, 69984, 77760
Offset: 1

Views

Author

Michel Lagneau, Aug 12 2020

Keywords

Comments

Members m in A328149 for which there exists a number k < tau(m) such that the elements of all quadruples satisfying x^3 + y^3 + z^3 = w^3 included in the set of the divisors of m are the first k divisors of m.
Conjecture 1: a(n) == 0 (mod 144).
Conjecture 2: if the numbers m such that the elements of all quadruples (x, y, z, w) satisfying x^3 + y^3 + z^3 = w^3 contained in the set of divisors of m are exactly the first k divisors of m, then k = tau(m) - 5 or tau(m) - 6.
The corresponding k of the sequence are given by the sequence {b(n)} = {24, 19, 30, 23, 34, 25, 36, 27, 42, 30, 42, 44, 31, 31, 50, 35, 48, 54, 35, 37, 58, 54, ...} and the sequence {c(n)} = {tau(a(n)) - b(n)} = {6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 6, 5, 5, 6, 5, 6, 6, 5, 5, 6, 6, ...}. We observe that c(n) = 5 or 6 (see the table in the link). For n = 1 to 70, the statistic observed is 34 occurrences for the number 5 (48.57%) and 36 occurrences for the number 6 (51.42%). It is probable that Pr(5) tends to 0.5 and Pr(6) tends to 0.5 as n tends to infinity, where Pr(x) is the probability of the occurrence x.
It appears that assuming (x,y,z,w) to contain distinct elements or not does not matter to the sequence, unlike A335654. - Chai Wah Wu, Nov 16 2020
For 176 terms we get 87 5's and 89 6's. - Michel Marcus, Nov 17 2020

Examples

			2592 is in the sequence because the divisors are {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 72, 81, 96, 108, 144, 162, 216, 288, 324, 432, 648, 864, 1296, 2592} and the elements of the 9 quadruples (x, y, z, w) satisfying x^3 + y^3 + z^3 = w^3 and belonging to the set of divisors of 2592: (1, 6, 8, 9), (2, 12, 16, 18), (3, 18, 24, 27), (4, 24, 32, 36), (6, 36, 48, 54), (9, 54, 72, 81), (12, 72, 96, 108), (18, 108, 144, 162) and (36, 216, 288, 324) are the first 25 divisors of 2592 with 25 = tau(2592) - 5 = 30 - 5.
		

References

  • Y. Perelman, Solutions to x^3 + y^3 + z^3 = u^3, Mathematics can be Fun, pp. 316-9 Mir Moscow 1985.

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 6 by 6 to 200000 do :lst:={}:lst1:={}:it:=0:
       d:=divisors(n):n0:=nops(d):
        for i from 1 to n0-3 do:
         for j from i+1 to n0-2 do:
          for k from j+1 to n0-1 do:
          for m from k+1 to n0 do:
           if d[i]^3 + d[j]^3 + d[k]^3 = d[m]^3
            then
            it:=it+1:
            lst:=lst union {d[i]} union {d[j]} union {d[k]} union {d[m]}:
            else
           fi:
          od:
         od:
        od:
        od:
        n1:=nops(lst):
         for l from 1 to n1 do:
          lst1:= lst1 union {d[l]}:
         od:
        if lst=lst1 and lst<>{}
         then
         x:=tau(n)-n1:printf(`%d %d %d %d %d \n`,n,tau(n),n1,x,it):
        else fi:
       od:
  • PARI
    isok(n) = {my(d=divisors(n), nb=0, s=[]); if (#d > 3, for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (ispower(d[i]^3+d[j]^3+d[k]^3, 3, &m) && !(n%m), s = concat(s, [d[i], d[j], d[k], m]));););); s = Set(s); if (#s, for (k=1, #s, if (s[k] != d[k], return (0));); return(1);););} \\ Michel Marcus, Nov 15 2020

A360946 Number of Pythagorean quadruples with inradius n.

Original entry on oeis.org

1, 3, 6, 10, 9, 19, 16, 25, 29, 27, 27, 56, 31, 51, 49, 61, 42, 91, 52, 71, 89, 86, 63, 142, 64, 95, 116, 132, 83, 153, 90, 144, 149, 133, 108, 238, 108, 162, 169, 171, 122, 284, 130, 219, 200, 196, 145, 340, 174, 201, 231, 239, 164, 364, 176, 314, 278, 256, 190, 399, 195, 281, 360, 330
Offset: 1

Views

Author

Keywords

Comments

A Pythagorean quadruple is a quadruple (a,b,c,d) of positive integers such that a^2 + b^2 + c^2 = d^2 with a <= b <= c. Its inradius is (a+b+c-d)/2, which is a positive integer.
For every positive integer n, there is at least one Pythagorean quadruple with inradius n.

Examples

			For n=1 the a(1)=1 solution is (1,2,2,3).
For n=2 the a(2)=3 solutions are (1,4,8,9), (2,3,6,7) and (2,4,4,6).
For n=3 the a(3)=6 solutions are (1,6,18,19), (2,5,14,15), (2,6,9,11), (3,4,12,13), (3,6,6,9) and (4,4,7,9).
		

References

  • J. M. Blanco Casado, J. M. Sánchez Muñoz, and M. A. Pérez García-Ortega, El Libro de las Ternas Pitagóricas, Preprint 2023.

Crossrefs

Programs

  • Mathematica
    n=50;
    div={};suc={};A={};
    Do[A=Join[A,{Range[1,(1+1/Sqrt[3])q]}],{q,1,n}];
    Do[suc=Join[suc,{Length[div]}];div={};For [i=1,i<=Length[Extract[A,q]],i++,div=Join[div,Intersection[Divisors[q^2+(Extract[Extract[A,q],i]-q)^2],Range[2(Extract[Extract[A,q],i]-q),Sqrt[q^2+(Extract[Extract[A,q],i]-q)^2]]]]],{q,1,n}];suc=Rest[Join[suc,{Length[div]}]];matriz={{"q"," ","cuaternas"}};For[j=1,j<=n,j++,matriz=Join[matriz,{{j," ",Extract[suc,j]}}]];MatrixForm[Transpose[matriz]]
Showing 1-2 of 2 results.