A337036 Numbers m such that the elements of all quadruples (x, y, z, w) satisfying x^3 + y^3 + z^3 = w^3 contained in the set of divisors of m are exactly the first k divisors of m for some k.
720, 864, 1440, 1728, 2160, 2592, 2880, 3456, 4320, 5184, 5760, 6480, 6912, 7776, 8640, 10368, 11520, 12960, 13824, 15552, 17280, 19440, 20736, 23040, 23328, 25920, 27648, 31104, 34560, 38880, 41472, 46080, 46656, 51840, 55296, 58320, 62208, 69120, 69984, 77760
Offset: 1
Keywords
Examples
2592 is in the sequence because the divisors are {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 72, 81, 96, 108, 144, 162, 216, 288, 324, 432, 648, 864, 1296, 2592} and the elements of the 9 quadruples (x, y, z, w) satisfying x^3 + y^3 + z^3 = w^3 and belonging to the set of divisors of 2592: (1, 6, 8, 9), (2, 12, 16, 18), (3, 18, 24, 27), (4, 24, 32, 36), (6, 36, 48, 54), (9, 54, 72, 81), (12, 72, 96, 108), (18, 108, 144, 162) and (36, 216, 288, 324) are the first 25 divisors of 2592 with 25 = tau(2592) - 5 = 30 - 5.
References
- Y. Perelman, Solutions to x^3 + y^3 + z^3 = u^3, Mathematics can be Fun, pp. 316-9 Mir Moscow 1985.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..176 (n = 1..71 from Michel Marcus)
- Michel Lagneau, Table
Programs
-
Maple
with(numtheory): for n from 6 by 6 to 200000 do :lst:={}:lst1:={}:it:=0: d:=divisors(n):n0:=nops(d): for i from 1 to n0-3 do: for j from i+1 to n0-2 do: for k from j+1 to n0-1 do: for m from k+1 to n0 do: if d[i]^3 + d[j]^3 + d[k]^3 = d[m]^3 then it:=it+1: lst:=lst union {d[i]} union {d[j]} union {d[k]} union {d[m]}: else fi: od: od: od: od: n1:=nops(lst): for l from 1 to n1 do: lst1:= lst1 union {d[l]}: od: if lst=lst1 and lst<>{} then x:=tau(n)-n1:printf(`%d %d %d %d %d \n`,n,tau(n),n1,x,it): else fi: od:
-
PARI
isok(n) = {my(d=divisors(n), nb=0, s=[]); if (#d > 3, for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (ispower(d[i]^3+d[j]^3+d[k]^3, 3, &m) && !(n%m), s = concat(s, [d[i], d[j], d[k], m]));););); s = Set(s); if (#s, for (k=1, #s, if (s[k] != d[k], return (0));); return(1);););} \\ Michel Marcus, Nov 15 2020
Comments