A331373 Decimal expansion of Sum_{k>=2} 1/(k! - 1).
1, 2, 5, 3, 4, 9, 8, 7, 5, 5, 6, 9, 9, 9, 5, 3, 4, 7, 1, 6, 4, 3, 3, 6, 0, 9, 3, 7, 9, 0, 5, 7, 9, 8, 9, 4, 0, 3, 6, 9, 2, 3, 2, 2, 0, 8, 3, 3, 2, 0, 1, 3, 4, 1, 7, 0, 6, 3, 8, 3, 4, 7, 1, 6, 6, 4, 0, 9, 5, 2, 4, 8, 2, 0, 4, 8, 9, 8, 7, 1, 7, 0, 8, 9, 0, 2, 4
Offset: 1
Examples
1.25349875569995347164336093790579894036923220833201...
References
- Paul Erdős, Some of my favourite unsolved problems, in A. Baker, B. Bollobás and A. Hajnal (eds.), A tribute to Paul Erdős, Cambridge University Press, 1990, p. 470.
Links
- Paul Erdős, On the irrationality of certain series: problems and results, in Alan Baker (ed.), New Advances in Transcendence Theory, Cambridge University Press, 1988, p. 102.
- Paul Erdős and Ronald L. Graham, Old and new problems and results in combinatorial number theory, L'enseignement Mathématique, Université de Genève, 1980, p. 62.
Programs
-
Mathematica
RealDigits[Sum[1/(k! - 1), {k, 2, 300}], 10, 100][[1]]
-
PARI
suminf(k=2, 1/(k!-1)) \\ Michel Marcus, May 03 2020
Comments