cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331432 Triangle T(n,k) (n >= k >= 0) read by rows: T(n,0) = (1+(-1)^n)/2; for k>=1, set T(0,k) = 0, S(n,k) = binomial(n,k)*binomial(n+k+1,k), and for n>=1, T(n,k) = S(n,k)-T(n-1,k).

Original entry on oeis.org

1, 0, 3, 1, 5, 10, 0, 10, 35, 35, 1, 14, 91, 189, 126, 0, 21, 189, 651, 924, 462, 1, 27, 351, 1749, 4026, 4290, 1716, 0, 36, 594, 4026, 13299, 22737, 19305, 6435, 1, 44, 946, 8294, 36751, 89375, 120835, 85085, 24310, 0, 55, 1430, 15730, 89375, 289003, 551837, 615043, 369512, 92378, 1, 65, 2080, 27950, 197275, 811733, 2047123, 3203837, 3031678, 1587222, 352716
Offset: 0

Views

Author

N. J. A. Sloane, Jan 17 2020

Keywords

Comments

The scanned pages of Ser are essentially illegible, and the book is out of print and hard to locate.
For Table IV on page 93, it is simplest to ignore the minus signs. The present triangle then matches all the given terms in that triangle, so it seems best to define the triangle by the recurrences given here, and to conjecture (strongly) that this is the same as Ser's triangle.

Examples

			Triangle begins:
  1;
  0,  3;
  1,  5,   10;
  0, 10,   35,    35;
  1, 14,   91,   189,    126;
  0, 21,  189,   651,    924,    462;
  1, 27,  351,  1749,   4026,   4290,    1716;
  0, 36,  594,  4026,  13299,  22737,   19305,    6435;
  1, 44,  946,  8294,  36751,  89375,  120835,   85085,   24310;
  0, 55, 1430, 15730,  89375, 289003,  551837,  615043,  369512,   92378;
  1, 65, 2080, 27950, 197275, 811733, 2047123, 3203837, 3031678, 1587222, 352716;
		

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.

Crossrefs

Columns 1 and 2 are A176222 and A331429; the last three diagonals are A002739, A002737, A001700.
Taking the component-wise sums of the rows by pairs give the triangle in A178303.
Ser's tables I and III are A331430 and A331431 (both are still mysterious).

Programs

  • Maple
    SS := (n,k)->binomial(n,k)*binomial(n+k+1,k);
    T4:=proc(n,k) local i; global SS; option remember;
    if k=0 then return((1+(-1)^n)/2); fi;
    if n=0 then 0 else SS(n,k)-T4(n-1,k); fi; end;
    rho:=n->[seq(T4(n,k),k=0..n)];
    for n from 0 to 14 do lprint(rho(n)); od:
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0, (1 + (-1)^n)/2, Binomial[n, k]*Binomial[n+k+1, k] - T[n-1, k]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 21 2022 *)
  • Sage
    def T(n,k): # A331432
        if (n<0): return 0
        elif (k==0): return ((n+1)%2)
        else: return binomial(n,k)*binomial(n+k+1,k) - T(n-1,k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022

Formula

T(n, k) = binomial(n,k)*binomial(n+k+1,k) - T(n-1, k), with T(n, 0) = (1 + (-1)^n)/2.
T(n, 0) = A000035(n+1).
T(n, 1) = A176222(n).
T(n, 2) = A331429(n).
T(n, n-2) = A002739(n).
T(n, n-1) = A002737(n).
T(n, n) = A001700(n).