A331432 Triangle T(n,k) (n >= k >= 0) read by rows: T(n,0) = (1+(-1)^n)/2; for k>=1, set T(0,k) = 0, S(n,k) = binomial(n,k)*binomial(n+k+1,k), and for n>=1, T(n,k) = S(n,k)-T(n-1,k).
1, 0, 3, 1, 5, 10, 0, 10, 35, 35, 1, 14, 91, 189, 126, 0, 21, 189, 651, 924, 462, 1, 27, 351, 1749, 4026, 4290, 1716, 0, 36, 594, 4026, 13299, 22737, 19305, 6435, 1, 44, 946, 8294, 36751, 89375, 120835, 85085, 24310, 0, 55, 1430, 15730, 89375, 289003, 551837, 615043, 369512, 92378, 1, 65, 2080, 27950, 197275, 811733, 2047123, 3203837, 3031678, 1587222, 352716
Offset: 0
Examples
Triangle begins: 1; 0, 3; 1, 5, 10; 0, 10, 35, 35; 1, 14, 91, 189, 126; 0, 21, 189, 651, 924, 462; 1, 27, 351, 1749, 4026, 4290, 1716; 0, 36, 594, 4026, 13299, 22737, 19305, 6435; 1, 44, 946, 8294, 36751, 89375, 120835, 85085, 24310; 0, 55, 1430, 15730, 89375, 289003, 551837, 615043, 369512, 92378; 1, 65, 2080, 27950, 197275, 811733, 2047123, 3203837, 3031678, 1587222, 352716;
References
- J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
- J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages)
Crossrefs
Programs
-
Maple
SS := (n,k)->binomial(n,k)*binomial(n+k+1,k); T4:=proc(n,k) local i; global SS; option remember; if k=0 then return((1+(-1)^n)/2); fi; if n=0 then 0 else SS(n,k)-T4(n-1,k); fi; end; rho:=n->[seq(T4(n,k),k=0..n)]; for n from 0 to 14 do lprint(rho(n)); od:
-
Mathematica
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0, (1 + (-1)^n)/2, Binomial[n, k]*Binomial[n+k+1, k] - T[n-1, k]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 21 2022 *)
-
Sage
def T(n,k): # A331432 if (n<0): return 0 elif (k==0): return ((n+1)%2) else: return binomial(n,k)*binomial(n+k+1,k) - T(n-1,k) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022
Comments