cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A331431 Triangle read by rows: T(n,k) = (-1)^(n+k)*(n+k+1)*binomial(n,k)*binomial(n+k,k) for n >= k >= 0.

Original entry on oeis.org

1, -2, 6, 3, -24, 30, -4, 60, -180, 140, 5, -120, 630, -1120, 630, -6, 210, -1680, 5040, -6300, 2772, 7, -336, 3780, -16800, 34650, -33264, 12012, -8, 504, -7560, 46200, -138600, 216216, -168168, 51480, 9, -720, 13860, -110880, 450450, -1009008, 1261260, -823680, 218790
Offset: 0

Views

Author

N. J. A. Sloane, Jan 17 2020

Keywords

Comments

Tables I, III, IV on pages 92 and 93 of Ser have integer entries and are A331430, A331431 (the present sequence), and A331432.
Given the system of equations 1 = Sum_{j=0..n} H(i, j) * x(j) for i = 2..n+2 where H(i,j) = 1/(i+j-1) for 1 <= i,j <= n is the n X n Hilbert matrix, then the solutions are x(j) = T(n, j). - Michael Somos, Mar 20 2020 [Corrected by Petros Hadjicostas, Jul 09 2020]

Examples

			Triangle begins:
   1;
  -2,    6;
   3,  -24,    30;
  -4,   60,  -180,     140;
   5, -120,   630,   -1120,     630;
  -6,  210, -1680,    5040,   -6300,     2772;
   7, -336,  3780,  -16800,   34650,   -33264,   12012;
  -8,  504, -7560,   46200, -138600,   216216, -168168,   51480;
   9, -720, 13860, -110880,  450450, -1009008, 1261260, -823680, 218790;
  ...
		

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93. See Table III.

Crossrefs

Columns 1 is A331433 or equally A007531, column 2 is A331434 or equally A054559; the last three diagonals are A002738, A002736, A002457.
Cf. A000290 (row sums), A002457,, A100071, A108666 (alternating row sums), A109188 (diagonal sums), A331322, A331323, A331430, A331432.

Programs

  • Magma
    [(-1)^(n+k)*(k+1)*(2*k+1)*Binomial(n+k+1,n-k)*Catalan(k): k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 22 2022
    
  • Maple
    gf := k -> (1+x)^(-2*(k+1)): ser := k -> series(gf(k), x, 32):
    T := (n, k) -> ((2*k+1)!/(k!)^2)*coeff(ser(k), x, n-k):
    seq(seq(T(n,k), k=0..n),n=0..7); # Peter Luschny, Jan 18 2020
    S:=(n,k)->(-1)^(n+k)*(n+k+1)!/((k!)^2*(n-k)!);
    rho:=n->[seq(S(n,k),k=0..n)];
    for n from 0 to 14 do lprint(rho(n)); od: # N. J. A. Sloane, Jan 18 2020
  • Mathematica
    Table[(-1)^(n+k)*(n+k+1)*Binomial[2*k,k]*Binomial[n+k,n-k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 22 2022 *)
  • Sage
    flatten([[(-1)^(n+k)*(2*k+1)*binomial(2*k,k)*binomial(n+k+1,n-k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Mar 22 2022

Formula

T(n, 0) = (-1)^n*A000027(n+1).
T(n, 1) = A331433(n-1) = (-1)^(n+1)*A007531(n+2).
T(n, 2) = A331434(n-2) = (-1)^n*A054559(n+3).
T(n, n-2) = A002738(n-2).
T(n, n-1) = (-1)*A002736(n).
T(n, n) = A002457(n).
T(2*n, n) = (-1)^n*(3*n+1)!/(n!)^3 = (-1)^n*A331322(n).
Sum_{k=0..n} T(n, k) = A000290(n+1) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A108666(n+1) (alternating row sums).
Sum_{k=0..n} T(n-k, k) = (-1)^n*A109188(n+1) (diagonal sums).
2^n*Sum_{k=0..n} T(n, k)/2^k = (-1)^floor(n/2)*A100071(n+1) (positive half sums).
(-2)^n*Sum_{k=0..n} T(n, k)/(-2)^k = A331323(n) (negative half sums).
T(n, k) = ((2*k+1)!/(k!)^2)*[x^(n-k)] (1+x)^(-2*(k+1)). - Georg Fischer and Peter Luschny, Jan 18 2020
T(n,k) = (-1)^(n+k)*(n+k+1)!/((k!)^2*(n-k)!), for n >= k >= 0. - N. J. A. Sloane, Jan 18 2020
From Petros Hadjicostas, Jul 09 2020: (Start)
Michael Somos's formulas above can be restated as
Sum_{k=0..n} T(n,k)/(i+k) = 1 for i = 1..n+1.
These are special cases of the following formula that is alluded to (in some way) in Ser's book:
1 - Sum_{k=0..n} T(n,k)/(x + k) = (x-1)*...*(x-(n + 1))/(x*(x+1)*...*(x+n)).
Because T(n,k) = (-1)^(n+1)*(n + k + 1)*A331430(n,k) and Sum_{k=0..n} A331430(n,k) = (-1)^(n+1), one may derive this formula from Ser's second formula stated in A331430. (End)
T(2*n+1, n) = (-2)*(-27)^n*Pochhammer(4/3, n)*Pochhammer(5/3, n)/(n!*(n+1)!). - G. C. Greubel, Mar 22 2022

Extensions

Several typos in the data corrected by Georg Fischer and Peter Luschny, Jan 18 2020
Definition changed by N. J. A. Sloane, Jan 18 2020

A331430 Triangle read by rows: T(n, k) = (-1)^(k+1)*binomial(n,k)*binomial(n+k,k) (n >= k >= 0).

Original entry on oeis.org

-1, -1, 2, -1, 6, -6, -1, 12, -30, 20, -1, 20, -90, 140, -70, -1, 30, -210, 560, -630, 252, -1, 42, -420, 1680, -3150, 2772, -924, -1, 56, -756, 4200, -11550, 16632, -12012, 3432, -1, 72, -1260, 9240, -34650, 72072, -84084, 51480, -12870, -1, 90, -1980, 18480, -90090, 252252, -420420, 411840, -218790, 48620, -1, 110, -2970, 34320, -210210, 756756, -1681680, 2333760, -1969110, 923780, -184756
Offset: 0

Views

Author

N. J. A. Sloane, Jan 17 2020

Keywords

Comments

This is Table I of Ser (1933), page 92.
From Petros Hadjicostas, Jul 09 2020: (Start)
Essentially Ser (1933) in his book (and in particular for Tables I-IV) finds triangular arrays that allow him to express the coefficients of various kinds of series in terms of the coefficients of other series.
He uses Newton's series (or some variation of it), factorial series, and inverse factorial series. Unfortunately, he uses unusual notation, and as a result it is difficult to understand what he is actually doing.
Rivoal (2008, 2009) essentially uses factorial series and transformations to other kinds of series to provide new proofs of the irrationality of log(2), zeta(2), and zeta(3). As a result, the triangular array T(n,k) appears in various parts of his papers.
We believe Table I (p. 92) in Ser (1933), regarding the numbers T(n,k), corresponds to four different formulas. We have deciphered the first two of them. (End)

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k=0..n) begins:
  -1;
  -1,  2;
  -1,  6,   -6;
  -1, 12,  -30,   20;
  -1, 20,  -90,  140,    -70;
  -1, 30, -210,  560,   -630,   252;
  -1, 42, -420, 1680,  -3150,  2772,   -924;
  -1, 56, -756, 4200, -11550, 16632, -12012, 3432;
  ...
From _Petros Hadjicostas_, Jul 11 2020: (Start)
Its inverse (from Table II, p. 92) is
  -1;
  -1/2, 1/2;
  -1/3, 1/2,   -1/6;
  -1/4, 9/20,  -1/4,  1/20;
  -1/5, 2/5,   -2/7,  1/10, -1/70;
  -1/6, 5/14, -25/84, 5/36, -1/28,  1/252;
  -1/7, 9/28, -25/84, 1/6,  -9/154,  1/84, -1/924;
   ... (End)
		

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, pp. 92-93.

Crossrefs

A063007 is the same triangle without the minus signs, and has much more information.
Columns 1 and 2 are A002378 and A033487; the last three diagonals are A002544, A002457, A000984.

Programs

  • Magma
    /* As triangle: */ [[(-1)^(k+1) * Factorial(n+k) / (Factorial(k) * Factorial(k) * Factorial(n-k)): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jan 19 2020
    
  • Mathematica
    Table[CoefficientList[-Hypergeometric2F1[-n, n + 1, 1, x], x], {n, 0, 9}] // Flatten (* Georg Fischer, Jan 18 2020 after Peter Luschny in A063007 *)
  • SageMath
    def T(n,k): return (-1)^(k+1)*falling_factorial(n+k,2*k)/factorial(k)^2
    flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # Peter Luschny, Jul 09 2020

Formula

T(n,k) can also be written as (-1)^(k+1)*(n+k)!/(k!*k!*(n-k)!).
From Petros Hadjicostas, Jul 09 2020: (Start)
Ser's first formula from his Table I (p. 92) is the following:
Sum_{k=0..n} T(n,k)*k!/(x*(x+1)*...*(x+k)) = -(x-1)*(x-2)*...*(x-n)/(x*(x+1)*...*(x+n)).
As a result, Sum_{k=0..n} T(n,k)/binomial(m+k, k) = 0 for m = 1..n.
Ser's second formula from his Table I appears also in Rivoal (2008, 2009) in a slightly different form:
Sum_{k=0..n} T(n,k)/(x + k) = (-1)^(n+1)*(x-1)*(x-2)*...*(x-n)/(x*(x+1)*...*(x+n)).
As a result, for m = 1..n, Sum_{k=0..n} T(n,k)/(m + k) = 0. (End)
T(n,k) = (-1)^(k+1)*FallingFactorial(n+k,2*k)/(k!)^2. - Peter Luschny, Jul 09 2020
From Petros Hadjicostas, Jul 10 2020: (Start)
Peter Luschny's formula above is essentially the way the numbers T(n,k) appear in Eq. (7) on p. 86 of Ser's (1933) book. Eq. (7) is essentially equivalent to the first formula above (related to Table I on p. 92).
By inverting that formula (in some way), he gets
n!/(x*(x+1)*...*(x+n)) = Sum_{p=0..n} (-1)^p*(2*p+1)*f_p(n+1)*f_p(x), where f_p(x) = (x-1)*...*(x-p)/(x*(x+1)*...*(x+p)). This is equivalent to Eq. (8) on p. 86 of Ser's book.
The rational coefficients A(n,p) = (2*p+1)*f_p(n+1) = (2*p+1)*(n*(n-1)*...*(n+1-p))/((n+1)*...*(n+1+p)) appear in Table II on p. 92 of Ser's book.
If we consider the coefficients T(n,k) and (-1)^(p+1)*A(n,p) as infinite lower triangular matrices, then they are inverses of one another (see the example below). This means that, for m >= s,
Sum_{k=s..m} T(m,k)*(-1)^(s+1)*A(k,s) = I(s=m) = Sum_{k=s..m} (-1)^(k+1)*A(m,k)*T(k,s), where I(s=m) = 1, if s = m, and = 0, otherwise.
Without the (-1)^p, we get the formula
1/(x+n) = Sum_{p=0..n} (2*p+1)*f_p(n+1)*f_p(x),
which apparently is the inversion of the second of Ser's formulas (related to Table I on p. 92).
In all of the above formulas, an empty product is by definition 1, so f_0(x) = 1/x. (End)

Extensions

Thanks to Bob Selcoe, who noticed a typo in one of the entries, which, when corrected, led to an explicit formula for the whole of Ser's Table I.

A002737 a(n) = Sum_{j=0..n} (n+j)*binomial(n+j,j).

Original entry on oeis.org

0, 5, 35, 189, 924, 4290, 19305, 85085, 369512, 1587222, 6760390, 28601650, 120349800, 504131940, 2103781365, 8751023325, 36300541200, 150217371150, 620309379690, 2556724903590, 10520494818600, 43225511319900, 177361820257050, 726860987017074, 2975511197688624, 12168371410300700
Offset: 0

Views

Author

Keywords

Comments

The former title was "Coefficients for extrapolation".

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A331432.
Cf. A000108.

Programs

  • Magma
    [(n*(2*n+3)*Binomial(2*n+1, n+1))/(n+2): n in [0..30]]; // Vincenzo Librandi, Jan 19 2020
    
  • Maple
    t5 := n-> add(binomial(n+j,j)*(n+j),j=0..n); [seq(t5(n),n=0..40)];
    # Alternative:
    A002737 := n -> (n*(2*n + 3)*binomial(2*n+1, n+1))/(n + 2):
    seq(A002737(n), n=0..25); # Peter Luschny, Jan 18 2020
  • Mathematica
    Table[n(2n+3)Binomial[2n+1, n+1]/(n+2), {n, 0, 25}] (* Vincenzo Librandi, Jan 19 2020 *)
  • SageMath
    [n*(n+3)*catalan_number(n+2)/4 for n in (0..30)] # G. C. Greubel, Mar 23 2022

Formula

a(n) = Sum_{j=0..n} binomial(n+j,j)*(n+j). - Zerinvary Lajos, Aug 30 2006
a(n) = n*binomial(2*n+4, n+2)/4. - Zerinvary Lajos, Feb 28 2007
These 2 formulas are correct - see A331432. - N. J. A. Sloane, Jan 17 2020
a(n) = (n*(2*n + 3)*binomial(2*n + 1, n + 1))/(n + 2). - Peter Luschny, Jan 18 2020
E.g.f.: exp(2*x) * ((1 - 3*x + 8*x^2) * BesselI(1,2*x) / x - (1 - 8*x) * BesselI(0,2*x)). - Ilya Gutkovskiy, Nov 03 2021
G.f.: ((1-3*x -4*x^2)*sqrt(1-4*x) -(1-5*x))/(2*x^2*(1-4*x)^(3/2)). - G. C. Greubel, Mar 23 2022

Extensions

Entry revised by N. J. A. Sloane, Jan 18 2020

A002739 a(n) = ((2*n-1)!/(2*n!*(n-2)!))*((n^3-3*n^2+2*n+2)/(n^2-1)).

Original entry on oeis.org

1, 10, 91, 651, 4026, 22737, 120835, 615043, 3031678, 14578928, 68747966, 319075550, 1461581460, 6621579135, 29718121635, 132302508195, 584868588150, 2569600678260, 11227927978410, 48822435838410, 211370463290220, 911509393468050, 3916793943349326, 16776146058210126, 71641860657928876
Offset: 2

Views

Author

Keywords

Comments

The former name was "Coefficients for extrapolation".

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A331432.

Programs

  • Magma
    [(n^3 -3*n^2 +2*n +2)*Catalan(n)/4: n in [2..30]]; // G. C. Greubel, Mar 23 2022
    
  • Maple
    t4 := n-> ((2*n-1)! /(2*n!*(n-2)!))*((n^3-3*n^2+2*n+2)/(n^2-1));
    [seq(t4(n),n=2..40)];
  • Mathematica
    Table[(n^3-3*n^2+2*n+2)*CatalanNumber[n]/4, {n,2,30}]
  • Sage
    [(n^3 -3*n^2 +2*n +2)*catalan_number(n)/4 for n in (2..30)] # G. C. Greubel, Mar 23 2022

Formula

a(n) ~ 2^(2*n-5)*(8*n-33)*sqrt(n/Pi). - Peter Luschny, Jan 18 2020
From G. C. Greubel, Mar 23 2022: (Start)
a(n) = (1/4)*(n^3 - 3*n^2 + 2*n + 2)*A000108(n).
G.f.: (1 -9*x +21*x^2 +2*x^3)/(2*x*(1-4*x)^(5/2)) - (1 +x +x^2)/(2*x). (End)

Extensions

Entry revised by N. J. A. Sloane, Jan 18 2020

A331429 Expansion of x^2*(10-5*x+x^2)/((1-x)^4*(1-x^2)).

Original entry on oeis.org

0, 0, 10, 35, 91, 189, 351, 594, 946, 1430, 2080, 2925, 4005, 5355, 7021, 9044, 11476, 14364, 17766, 21735, 26335, 31625, 37675, 44550, 52326, 61074, 70876, 81809, 93961, 107415, 122265, 138600, 156520, 176120, 197506, 220779, 246051, 273429, 303031, 334970, 369370, 406350, 446040, 488565, 534061, 582659, 634501
Offset: 0

Views

Author

N. J. A. Sloane, Jan 16 2020

Keywords

Comments

Column 2 of triangle in A331432.

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.

Crossrefs

Cf. A331432.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0] cat Coefficients(R!( x^2*(10-5*x+x^2)/((1-x)^4*(1-x^2)))); // Vincenzo Librandi, Jan 17 2020
    
  • Mathematica
    CoefficientList[Series[x^2(10-5x+x^2)/((1-x)^4(1-x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Jan 17 2020 *)
    Table[(n(n+3)(n^2+3n-2) +4(-1)^n -4)/8, {n, 0, 50}] (* Bruno Berselli, Jan 17 2020 *)
  • Sage
    [n*(n+3)*(n^2 +3*n -2)/8 - (n%2) for n in (0..50)] # G. C. Greubel, Mar 22 2022

Formula

a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n>5. - Vincenzo Librandi, Jan 17 2020
From Bruno Berselli, Jan 17 2020: (Start)
a(n) = (n*(n + 3)*(n^2 + 3*n - 2) + 4*(-1)^n - 4)/8. Therefore:
a(n) = n*(n + 3)*(n^2 + 3*n - 2)/8 if n is even,
a(n) = n*(n + 3)*(n^2 + 3*n - 2)/8 - 1 if n is odd. (End)
E.g.f.: (1/8)*(4*exp(-x) + (-4 + 8*x + 32*x^2 + 12*x^3 + x^4)*exp(x)). - G. C. Greubel, Mar 22 2022
Showing 1-5 of 5 results.