A331431 Triangle read by rows: T(n,k) = (-1)^(n+k)*(n+k+1)*binomial(n,k)*binomial(n+k,k) for n >= k >= 0.
1, -2, 6, 3, -24, 30, -4, 60, -180, 140, 5, -120, 630, -1120, 630, -6, 210, -1680, 5040, -6300, 2772, 7, -336, 3780, -16800, 34650, -33264, 12012, -8, 504, -7560, 46200, -138600, 216216, -168168, 51480, 9, -720, 13860, -110880, 450450, -1009008, 1261260, -823680, 218790
Offset: 0
Examples
Triangle begins: 1; -2, 6; 3, -24, 30; -4, 60, -180, 140; 5, -120, 630, -1120, 630; -6, 210, -1680, 5040, -6300, 2772; 7, -336, 3780, -16800, 34650, -33264, 12012; -8, 504, -7560, 46200, -138600, 216216, -168168, 51480; 9, -720, 13860, -110880, 450450, -1009008, 1261260, -823680, 218790; ...
References
- J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93. See Table III.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- A. Buhl, Book review: J. Ser - Les calculs formels des séries de factorielles, L'Enseignement Mathématique, 32 (1933), p. 275.
- L. A. MacColl, Review: J. Ser, Les calculs formels des séries de factorielles, Bull. Amer. Math. Soc., 41(3) (1935), p. 174.
- L. M. Milne-Thomson, Review of Les calculs formels des séries de factorielles. By J. Ser. Pp. vii, 98. 20 fr. 1933. (Gauthier-Villars), The Mathematical Gazette, Vol. 18, No. 228 (May, 1934), pp. 136-137.
- J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
- J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages.)
Crossrefs
Programs
-
Magma
[(-1)^(n+k)*(k+1)*(2*k+1)*Binomial(n+k+1,n-k)*Catalan(k): k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 22 2022
-
Maple
gf := k -> (1+x)^(-2*(k+1)): ser := k -> series(gf(k), x, 32): T := (n, k) -> ((2*k+1)!/(k!)^2)*coeff(ser(k), x, n-k): seq(seq(T(n,k), k=0..n),n=0..7); # Peter Luschny, Jan 18 2020 S:=(n,k)->(-1)^(n+k)*(n+k+1)!/((k!)^2*(n-k)!); rho:=n->[seq(S(n,k),k=0..n)]; for n from 0 to 14 do lprint(rho(n)); od: # N. J. A. Sloane, Jan 18 2020
-
Mathematica
Table[(-1)^(n+k)*(n+k+1)*Binomial[2*k,k]*Binomial[n+k,n-k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 22 2022 *)
-
Sage
flatten([[(-1)^(n+k)*(2*k+1)*binomial(2*k,k)*binomial(n+k+1,n-k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Mar 22 2022
Formula
T(n, 0) = (-1)^n*A000027(n+1).
T(n, n-2) = A002738(n-2).
T(n, n-1) = (-1)*A002736(n).
T(n, n) = A002457(n).
T(2*n, n) = (-1)^n*(3*n+1)!/(n!)^3 = (-1)^n*A331322(n).
Sum_{k=0..n} T(n, k) = A000290(n+1) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A108666(n+1) (alternating row sums).
Sum_{k=0..n} T(n-k, k) = (-1)^n*A109188(n+1) (diagonal sums).
2^n*Sum_{k=0..n} T(n, k)/2^k = (-1)^floor(n/2)*A100071(n+1) (positive half sums).
(-2)^n*Sum_{k=0..n} T(n, k)/(-2)^k = A331323(n) (negative half sums).
T(n, k) = ((2*k+1)!/(k!)^2)*[x^(n-k)] (1+x)^(-2*(k+1)). - Georg Fischer and Peter Luschny, Jan 18 2020
T(n,k) = (-1)^(n+k)*(n+k+1)!/((k!)^2*(n-k)!), for n >= k >= 0. - N. J. A. Sloane, Jan 18 2020
From Petros Hadjicostas, Jul 09 2020: (Start)
Michael Somos's formulas above can be restated as
Sum_{k=0..n} T(n,k)/(i+k) = 1 for i = 1..n+1.
These are special cases of the following formula that is alluded to (in some way) in Ser's book:
1 - Sum_{k=0..n} T(n,k)/(x + k) = (x-1)*...*(x-(n + 1))/(x*(x+1)*...*(x+n)).
Because T(n,k) = (-1)^(n+1)*(n + k + 1)*A331430(n,k) and Sum_{k=0..n} A331430(n,k) = (-1)^(n+1), one may derive this formula from Ser's second formula stated in A331430. (End)
T(2*n+1, n) = (-2)*(-27)^n*Pochhammer(4/3, n)*Pochhammer(5/3, n)/(n!*(n+1)!). - G. C. Greubel, Mar 22 2022
Extensions
Several typos in the data corrected by Georg Fischer and Peter Luschny, Jan 18 2020
Definition changed by N. J. A. Sloane, Jan 18 2020
Comments