cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331461 Array read by antidiagonals: A(n,k) is the number of nonequivalent binary matrices with k columns and any number of nonzero rows with n ones in every column up to permutation of rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 8, 4, 1, 1, 1, 7, 23, 16, 5, 1, 1, 1, 11, 66, 93, 30, 6, 1, 1, 1, 15, 212, 652, 332, 50, 7, 1, 1, 1, 22, 686, 6369, 6414, 1062, 80, 8, 1, 1, 1, 30, 2389, 79568, 226041, 56712, 3117, 120, 9, 1, 1, 1, 42, 8682, 1256425, 12848128, 7295812, 441881, 8399, 175, 10, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 18 2020

Keywords

Comments

A(n,k) is the number of non-isomorphic set multipartitions (multiset of sets) with k parts each part has size n.

Examples

			Array begins:
===========================================================
n\k | 0 1 2   3    4       5          6              7
----+-----------------------------------------------------
  0 | 1 1 1   1    1       1          1              1 ...
  1 | 1 1 2   3    5       7         11             15 ...
  2 | 1 1 3   8   23      66        212            686 ...
  3 | 1 1 4  16   93     652       6369          79568 ...
  4 | 1 1 5  30  332    6414     226041       12848128 ...
  5 | 1 1 6  50 1062   56712    7295812     1817321457 ...
  6 | 1 1 7  80 3117  441881  195486906   200065951078 ...
  7 | 1 1 8 120 8399 3006771 4298181107 17131523059493 ...
  ...
The A(2,3) = 8 matrices are:
  [1 0 0]  [1 1 0]  [1 1 1]  [1 1 0]  [1 1 0]  [1 1 1]  [1 1 0]  [1 1 1]
  [1 0 0]  [1 0 0]  [1 0 0]  [1 1 0]  [1 0 1]  [1 1 0]  [1 0 1]  [1 1 1]
  [0 1 0]  [0 1 0]  [0 1 0]  [0 0 1]  [0 1 0]  [0 0 1]  [0 1 1]
  [0 1 0]  [0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]
  [0 0 1]  [0 0 1]
  [0 0 1]
		

Crossrefs

Programs

  • PARI
    \\ See A304942 for Blocks
    T(n,k)={Blocks(k, n*k, n)}
    { for(n=0, 7, for(k=0, 6, print1(T(n,k), ", ")); print) }

Formula

A306018(n) = Sum_{d|n} A(n/d, d).