A331487 Primes p such that exactly one of 2^(p+1) - 3 and 2^(p+1) + 3 is a prime.
13, 17, 19, 23, 29, 83, 149, 173, 227, 389, 1109, 4001, 35753, 36551, 363119, 702193
Offset: 1
Examples
13 is in this sequence because 2^(13+1) - 3 = 16381 (prime) and 2^(13+1) + 3 = 16387 (composite number).
Programs
-
Magma
[p: p in PrimesUpTo(1000) | not (#[k: k in [2] | IsPrime(k*2^p-2*k+1)]) eq (#[k: k in [2] | IsPrime(k*2^p+2*k-1)])];
-
Mathematica
Select[Range[400], PrimeQ[#] && Xor @@ PrimeQ[2^(# + 1) + {-3, 3}] &] (* Amiram Eldar, Jan 19 2020 *)
-
PARI
isok(p) = isprime(2*2^p-3) + isprime(2*2^p+3) == 1; forprime(p=2, 500, if(isok(p), print1(p, ", "))); \\ Jinyuan Wang, Jan 19 2020
Comments