cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331508 Array read by antidiagonals: A(n,k) is the number of nonisomorphic T_0 n-regular set multipartitions (multisets of sets) on a k-set.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 5, 3, 1, 1, 0, 1, 11, 12, 4, 1, 1, 0, 1, 26, 66, 25, 5, 1, 1, 0, 1, 68, 445, 278, 44, 6, 1, 1, 0, 1, 177, 4279, 5532, 966, 73, 7, 1, 1, 0, 1, 497, 53340, 200589, 53535, 2957, 112, 8, 1, 1, 0, 1, 1476, 846254, 11662671, 7043925, 431805, 8149, 166, 9, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 18 2020

Keywords

Comments

An n-regular set multipartition is a finite multiset of nonempty sets in which each element appears in n blocks.
A set multipartition is T_0 if for every two distinct elements there exists a block containing one but not the other element.
A(n,k) is the number of nonequivalent binary matrices with k distinct columns and any number of nonzero rows with n ones in every column up to permutation of rows and columns.
A(n,k) is the number of non-isomorphic set-systems with k parts each of size n.

Examples

			Array begins:
===============================================
n\k | 0 1 2  3    4      5       6        7
----+------------------------------------------
  0 | 1 1 0  0    0      0       0        0 ...
  1 | 1 1 1  1    1      1       1        1 ...
  2 | 1 1 2  5   11     26      68      177 ...
  3 | 1 1 3 12   66    445    4279    53340 ...
  4 | 1 1 4 25  278   5532  200589 11662671 ...
  5 | 1 1 5 44  966  53535 7043925 ...
  6 | 1 1 6 73 2957 431805 ...
  ...
The A(2,3) = 5 matrices are:
  [1 0 0]  [1 1 0]  [1 1 1]  [1 1 0]  [1 1 0]
  [1 0 0]  [1 0 0]  [1 0 0]  [1 0 1]  [1 0 1]
  [0 1 0]  [0 1 0]  [0 1 0]  [0 1 0]  [0 1 1]
  [0 1 0]  [0 0 1]  [0 0 1]  [0 0 1]
  [0 0 1]  [0 0 1]
  [0 0 1]
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))[k]}
    T(n,k)={my(m=n*k, s=0); if(m==0, k<=1, forpart(q=m, my(g=sum(t=1, k, K(q, t, n)*x^t/t) + O(x*x^k)); s+=permcount(q)*polcoef(exp(g - subst(g,x,x^2)), k)); s/m!)}
    { for(n=0, 6, for(k=0, 5, print1(T(n, k), ", ")); print) } \\ Andrew Howroyd, Jan 16 2024

Formula

A306019(n) = Sum_{d|n} A(n/d, d).