cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A330942 Array read by antidiagonals: A(n,k) is the number of binary matrices with k columns and any number of nonzero rows with n ones in every column and columns in nonincreasing lexicographic order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 7, 1, 1, 1, 8, 75, 32, 1, 1, 1, 16, 1105, 2712, 161, 1, 1, 1, 32, 20821, 449102, 116681, 842, 1, 1, 1, 64, 478439, 122886128, 231522891, 5366384, 4495, 1, 1, 1, 128, 12977815, 50225389432, 975712562347, 131163390878, 256461703, 24320, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2020

Keywords

Comments

The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.
A(n,k) is the number of labeled n-uniform hypergraphs with multiple edges allowed and with k edges and no isolated vertices. When n=2 these objects are multigraphs.

Examples

			Array begins:
============================================================
n\k | 0 1    2         3              4                5
----+-------------------------------------------------------
  0 | 1 1    1         1              1                1 ...
  1 | 1 1    2         4              8               16 ...
  2 | 1 1    7        75           1105            20821 ...
  3 | 1 1   32      2712         449102        122886128 ...
  4 | 1 1  161    116681      231522891     975712562347 ...
  5 | 1 1  842   5366384   131163390878 8756434117294432 ...
  6 | 1 1 4495 256461703 78650129124911 ...
  ...
The A(2,2) = 7 matrices are:
   [1 0]  [1 0]  [1 0]  [1 1]  [1 0]  [1 0]  [1 1]
   [1 0]  [0 1]  [0 1]  [1 0]  [1 1]  [0 1]  [1 1]
   [0 1]  [1 0]  [0 1]  [0 1]  [0 1]  [1 1]
   [0 1]  [0 1]  [1 0]
		

Crossrefs

Rows n=1..3 are A000012, A121316, A136246.
Columns k=0..3 are A000012, A000012, A226994, A137220.
The version with nonnegative integer entries is A331315.
Other variations considering distinct rows and columns and equivalence under different combinations of permutations of rows and columns are:
All solutions: A262809 (all), A331567 (distinct rows).
Up to row permutation: A188392, A188445, A331126, A331039.
Up to column permutation: this sequence, A331571, A331277, A331569.
Nonisomorphic: A331461, A331510, A331508, A331509.
Cf. A331638.

Programs

  • Mathematica
    T[n_, k_] := With[{m = n k}, Sum[Binomial[Binomial[j, n] + k - 1, k] Sum[ (-1)^(i - j) Binomial[i, j], {i, j, m}], {j, 0, m}]];
    Table[T[n - k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 10 2020, from PARI *)
  • PARI
    T(n, k)={my(m=n*k); sum(j=0, m, binomial(binomial(j, n)+k-1, k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}

Formula

A(n,k) = Sum_{j=0..n*k} binomial(binomial(j,n)+k-1, k) * (Sum_{i=j..n*k} (-1)^(i-j)*binomial(i,j)).
A(n, k) = Sum_{j=0..k} abs(Stirling1(k, j))*A262809(n, j)/k!.
A(n, k) = Sum_{j=0..k} binomial(k-1, k-j)*A331277(n, j).
A331638(n) = Sum_{d|n} A(n/d, d).

A331461 Array read by antidiagonals: A(n,k) is the number of nonequivalent binary matrices with k columns and any number of nonzero rows with n ones in every column up to permutation of rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 8, 4, 1, 1, 1, 7, 23, 16, 5, 1, 1, 1, 11, 66, 93, 30, 6, 1, 1, 1, 15, 212, 652, 332, 50, 7, 1, 1, 1, 22, 686, 6369, 6414, 1062, 80, 8, 1, 1, 1, 30, 2389, 79568, 226041, 56712, 3117, 120, 9, 1, 1, 1, 42, 8682, 1256425, 12848128, 7295812, 441881, 8399, 175, 10, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 18 2020

Keywords

Comments

A(n,k) is the number of non-isomorphic set multipartitions (multiset of sets) with k parts each part has size n.

Examples

			Array begins:
===========================================================
n\k | 0 1 2   3    4       5          6              7
----+-----------------------------------------------------
  0 | 1 1 1   1    1       1          1              1 ...
  1 | 1 1 2   3    5       7         11             15 ...
  2 | 1 1 3   8   23      66        212            686 ...
  3 | 1 1 4  16   93     652       6369          79568 ...
  4 | 1 1 5  30  332    6414     226041       12848128 ...
  5 | 1 1 6  50 1062   56712    7295812     1817321457 ...
  6 | 1 1 7  80 3117  441881  195486906   200065951078 ...
  7 | 1 1 8 120 8399 3006771 4298181107 17131523059493 ...
  ...
The A(2,3) = 8 matrices are:
  [1 0 0]  [1 1 0]  [1 1 1]  [1 1 0]  [1 1 0]  [1 1 1]  [1 1 0]  [1 1 1]
  [1 0 0]  [1 0 0]  [1 0 0]  [1 1 0]  [1 0 1]  [1 1 0]  [1 0 1]  [1 1 1]
  [0 1 0]  [0 1 0]  [0 1 0]  [0 0 1]  [0 1 0]  [0 0 1]  [0 1 1]
  [0 1 0]  [0 0 1]  [0 0 1]  [0 0 1]  [0 0 1]
  [0 0 1]  [0 0 1]
  [0 0 1]
		

Crossrefs

Programs

  • PARI
    \\ See A304942 for Blocks
    T(n,k)={Blocks(k, n*k, n)}
    { for(n=0, 7, for(k=0, 6, print1(T(n,k), ", ")); print) }

Formula

A306018(n) = Sum_{d|n} A(n/d, d).

A306019 Number of non-isomorphic set-systems of weight n in which all parts have the same size.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 10, 2, 17, 14, 33, 2, 167, 2, 186, 491, 785, 2, 5839, 2, 11123, 53454, 15229, 2, 1102924, 53537, 193382, 16334183, 12411062, 2, 382413555, 2, 993814248, 9763321547, 53394774, 1778595972, 402119882757, 2, 1111261718, 9674133468473, 16955983996383
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

A set-system of weight n is a finite set of finite nonempty sets whose sizes sum to n.

Examples

			Non-isomorphic representatives of the a(6) = 10 set-systems:
{{1,2,3,4,5,6}}
{{1,2,3},{4,5,6}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,2},{3,4},{5,6}}
{{1,2},{3,5},{4,5}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1},{2},{3},{4},{5},{6}}
		

Crossrefs

Programs

  • PARI
    \\ See A331508 for T(n,k).
    a(n) = {if(n==0, 1, sumdiv(n, d, if(d==1 || d==n, 1, T(n/d, d))))} \\ Andrew Howroyd, Jan 16 2024

Formula

a(p) = 2 for prime p. - Andrew Howroyd, Aug 29 2019
a(n) = Sum_{d|n} A331508(n/d, d) for n > 0. - Andrew Howroyd, Jan 16 2024

Extensions

Terms a(12) and beyond from Andrew Howroyd, Sep 01 2019

A058790 Number of covers of an unlabeled n-set such that every point of the set is covered by exactly 3 subsets of the cover and that intersection of every 3 subsets of the cover contains at most one point.

Original entry on oeis.org

1, 3, 12, 66, 445, 4279, 53340, 846254, 16333946, 371976963, 9763321109, 290473143807, 9674133467729, 357177322891321, 14503958827502886, 643502334799711633, 31018731336031551119, 1616523352051185316626, 90689288905913623412837, 5456178840303106057314759, 350830170593891706361540379
Offset: 1

Views

Author

Vladeta Jovovic, Nov 30 2000

Keywords

Comments

Cover may include multiple occurrences of a subset. Also n-rowed binary matrices with distinct rows and all row sums 3.

References

  • For labeled case see Goulden I. P., Jackson D. M., Combinatorial Enumeration, John Wiley and Sons, New York, 1983.

Crossrefs

Extensions

More terms from T. Forbes (anthony.d.forbes(AT)googlemail.com), May 24 2003

A331510 Array read by antidiagonals: A(n,k) is the number of nonequivalent binary matrices with k columns and any number of distinct nonzero rows with n ones in every column up to permutation of rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 3, 1, 0, 1, 1, 5, 4, 0, 0, 1, 1, 7, 12, 3, 0, 0, 1, 1, 11, 36, 23, 1, 0, 0, 1, 1, 15, 124, 191, 30, 0, 0, 0, 1, 1, 22, 412, 2203, 837, 23, 0, 0, 0, 1, 1, 30, 1500, 31313, 41664, 2688, 12, 0, 0, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 18 2020

Keywords

Examples

			Array begins:
=================================
n\k | 0 1 2 3  4   5    6   7
----+----------------------------
  0 | 1 1 1 1  1   1    1   1 ...
  1 | 1 1 2 3  5   7   11  15 ...
  2 | 1 0 1 4 12  36  124 412 ...
  3 | 1 0 0 3 23 191 2203 ...
  4 | 1 0 0 1 30 837 ...
  5 | 1 0 0 0 23 ...
  ...
The A(2,3) = 4 matrices are:
  [1 1 1]  [1 1 0]  [1 1 1]  [1 1 0]
  [1 0 0]  [1 0 1]  [1 1 0]  [1 0 1]
  [0 1 0]  [0 1 0]  [0 0 1]  [0 1 1]
  [0 0 1]  [0 0 1]
		

Crossrefs

Rows n=1..3 are A000041, A331717, A331718.
Column k=5 is A331719.

Formula

A(n,k) = 0 for k > 0, n > 2^(k-1).
A(n,k) = A(2^(k-1) - n, k) for k > 0, n <= 2^(k-1).

Extensions

a(58)-a(65) from Andrew Howroyd, Feb 08 2020

A331509 Array read by antidiagonals: A(n,k) is the number of nonisomorphic T_0 n-regular set-systems on a k-set.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 3, 0, 0, 1, 0, 1, 6, 3, 0, 0, 1, 0, 1, 15, 19, 1, 0, 0, 1, 0, 1, 42, 141, 29, 0, 0, 0, 1, 0, 1, 109, 1571, 769, 23, 0, 0, 0, 1, 0, 1, 320
Offset: 0

Views

Author

Andrew Howroyd, Jan 18 2020

Keywords

Comments

An n-regular set-system is a finite set of nonempty sets in which each element appears in n blocks.
A set-system is T_0 if for every two distinct elements there exists a block containing one but not the other element.
A(n,k) is the number of nonequivalent binary matrices with k distinct columns and any number of distinct nonzero rows with n ones in every column up to permutation of rows and columns.

Examples

			Array begins:
=================================
n\k | 0 1 2 3  4   5    6   7
----+----------------------------
  0 | 1 1 0 0  0   0    0   0 ...
  1 | 1 1 1 1  1   1    1   1 ...
  2 | 1 0 1 3  6  15   42 109 ...
  3 | 1 0 0 3 19 141 1571 ...
  4 | 1 0 0 1 29 769 ...
  5 | 1 0 0 0 23 ...
  ...
The A(2,3) = 3 matrices are:
  [1 1 1]    [1 1 0]    [1 1 0]
  [1 0 0]    [1 0 1]    [1 0 1]
  [0 1 0]    [0 1 0]    [0 1 1]
  [0 0 1]    [0 0 1]
		

Crossrefs

Row 2 appears to be A005368. Row 3 is A331716.

A058791 Number of covers of an unlabeled n-set such that every point of the set is covered by exactly 4 subsets of the cover and that intersection of every 4 subsets of the cover contains at most one point.

Original entry on oeis.org

1, 4, 25, 278, 5532, 200589, 11662671, 981458725, 111213730857, 16212510876591, 2947663429595884, 653299790376494253, 173373367472722467460, 54295204354760461199529, 19822683467350158062736540
Offset: 1

Views

Author

Vladeta Jovovic, Nov 30 2000

Keywords

Comments

Cover may include multiple occurrences of a subset. Also n-rowed binary matrices with distinct rows and all row sums 4.

Crossrefs

Extensions

a(8)-a(12) from Andrew Howroyd, Jan 29 2020
a(13)-a(15) from Sean A. Irvine, Aug 26 2022

A058792 Number of covers of an unlabeled n-set such that every point of the set is covered by exactly 5 subsets of the cover and that intersection of every 5 subsets of the cover contains at most one point.

Original entry on oeis.org

1, 5, 44, 966, 53535, 7043925, 1775617861, 738134963014, 461550358993886, 409321620633426443, 493892363593918906465
Offset: 1

Views

Author

Vladeta Jovovic, Nov 30 2000

Keywords

Comments

Cover may include multiple occurrences of a subset. Also n-rowed binary matrices with distinct rows and all row sums 5.

Crossrefs

Extensions

a(7)-a(10) from Andrew Howroyd, Jan 29 2020
a(11) from Sean A. Irvine, Aug 27 2022

A058793 Number of covers of an unlabeled n-set such that every point of the set is covered by exactly 6 subsets of the cover and that intersection of every 6 subsets of the cover contains at most one point.

Original entry on oeis.org

1, 6, 73, 2957, 431805, 193413963, 198914729182, 389238347659505, 1292594846197639190, 6753309741099683530616
Offset: 1

Views

Author

Vladeta Jovovic, Nov 30 2000

Keywords

Comments

Cover may include multiple occurrences of a subset. Also n-rowed binary matrices with distinct rows and all row sums 6.

Crossrefs

Extensions

a(6)-a(10) from Andrew Howroyd, Jan 29 2020

A302129 Number of unlabeled uniform connected hypergraphs of weight n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 6, 1, 9, 10, 17, 1, 108, 1, 86, 401, 482, 1, 4469, 1, 8435, 47959, 8082, 1, 1007342, 52414, 112835, 15338453, 11899367, 1, 362657533, 1, 977129970, 9349593479, 35787684, 1771297657, 390347162497, 1, 779945988, 9360467497257, 16838238535445
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2018

Keywords

Comments

A hypergraph is uniform if all edges have the same size. The weight of a hypergraph is the sum of cardinalities of the edges. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(8) = 9 uniform connected hypergraphs:
  {{1,2,3,4,5,6,7,8}}
  {{1,2,3,7}, {4,5,6,7}}
  {{1,2,5,6}, {3,4,5,6}}
  {{1,3,4,5}, {2,3,4,5}}
  {{1,2}, {1,3}, {2,4}, {3,4}}
  {{1,3}, {2,4}, {3,5}, {4,5}}
  {{1,4}, {2,3}, {2,4}, {3,4}}
  {{1,4}, {2,5}, {3,5}, {4,5}}
  {{1,5}, {2,5}, {3,5}, {4,5}}
		

Crossrefs

Programs

  • PARI
    \\ See A331508 for T(n, k).
    InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoef(p,n)), vector(#v,n,1/n))}
    a(n) = {if(n==0, 1, sumdiv(n, d, if(d==1 || d==n, d==1, InvEulerT(vector(d, i, T(n/d, i)))[d] )))} \\ Andrew Howroyd, Jan 16 2024

Formula

a(p) = 1 for prime p. - Andrew Howroyd, Jan 16 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 16 2024
Showing 1-10 of 12 results. Next