A331510 Array read by antidiagonals: A(n,k) is the number of nonequivalent binary matrices with k columns and any number of distinct nonzero rows with n ones in every column up to permutation of rows and columns.
1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 3, 1, 0, 1, 1, 5, 4, 0, 0, 1, 1, 7, 12, 3, 0, 0, 1, 1, 11, 36, 23, 1, 0, 0, 1, 1, 15, 124, 191, 30, 0, 0, 0, 1, 1, 22, 412, 2203, 837, 23, 0, 0, 0, 1, 1, 30, 1500, 31313, 41664, 2688, 12, 0, 0, 0, 1
Offset: 0
Examples
Array begins: ================================= n\k | 0 1 2 3 4 5 6 7 ----+---------------------------- 0 | 1 1 1 1 1 1 1 1 ... 1 | 1 1 2 3 5 7 11 15 ... 2 | 1 0 1 4 12 36 124 412 ... 3 | 1 0 0 3 23 191 2203 ... 4 | 1 0 0 1 30 837 ... 5 | 1 0 0 0 23 ... ... The A(2,3) = 4 matrices are: [1 1 1] [1 1 0] [1 1 1] [1 1 0] [1 0 0] [1 0 1] [1 1 0] [1 0 1] [0 1 0] [0 1 0] [0 0 1] [0 1 1] [0 0 1] [0 0 1]
Crossrefs
Formula
A(n,k) = 0 for k > 0, n > 2^(k-1).
A(n,k) = A(2^(k-1) - n, k) for k > 0, n <= 2^(k-1).
Extensions
a(58)-a(65) from Andrew Howroyd, Feb 08 2020