cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331567 Array read by antidiagonals: A(n,k) is the number of binary matrices with k columns and any number of distinct nonzero rows with n ones in every column.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 0, 1, 1, 13, 6, 0, 1, 1, 75, 120, 0, 0, 1, 1, 541, 6174, 1104, 0, 0, 1, 1, 4683, 449520, 413088, 5040, 0, 0, 1, 1, 47293, 49686726, 329520720, 18481080, 0, 0, 0, 1, 1, 545835, 7455901320, 491236986720, 179438982360, 522481680, 0, 0, 0, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 20 2020

Keywords

Examples

			Array begins:
===============================================================
n\k | 0 1 2    3          4              5                6
----+----------------------------------------------------------
  0 | 1 1 1    1          1              1                1 ...
  1 | 1 1 3   13         75            541             4683 ...
  2 | 1 0 6  120       6174         449520         49686726 ...
  3 | 1 0 0 1104     413088      329520720     491236986720 ...
  4 | 1 0 0 5040   18481080   179438982360 3785623968170400 ...
  5 | 1 0 0    0  522481680 70302503250720 ...
  6 | 1 0 0    0 7875584640 ...
  ...
The A(2,2) = 6 matrices are:
   [1 1]  [1 1]  [1 0]  [1 0]  [0 1]  [0 1]
   [1 0]  [0 1]  [1 1]  [0 1]  [1 1]  [1 0]
   [0 1]  [1 0]  [0 1]  [1 1]  [1 0]  [1 1]
		

Crossrefs

Rows n=1..3 are A000670, A331640, A331641.
Column k=5 is A331642.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={ my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))), f=Vec(serlaplace(1/(1+x) + O(x*x^m))/(x-1))); if(n==0, 1, sum(j=1, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*sum(i=j, m, q[i-j+1]*f[i]))); }

Formula

A(n,k) = 0 for k > 0, n > 2^(k-1).
A(2^(k-1), k) = (2^k-1)! for k > 0.
A331643(n) = Sum_{d|n} A(n/d, d).