A331578 Number of labeled series-reduced rooted trees with n vertices and more than two branches of the root.
0, 0, 0, 4, 5, 186, 847, 17928, 166833, 3196630, 45667391, 925287276, 17407857337, 393376875906, 8989368580935, 229332484742416, 6094576250570849, 174924522900914094, 5271210321949744111, 168792243040279327860, 5674164658298121248361, 200870558472768096534490
Offset: 1
Keywords
Examples
Non-isomorphic representatives of the a(7) = 847 trees (in the format root[branches]) are: 1[2,3,4[5,6,7]] 1[2,3,4,5[6,7]] 1[2,3,4,5,6,7]
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
The non-series-reduced version is A331577.
The unlabeled version is A331488.
Lone-child-avoiding rooted trees are counted by A001678.
Topologically series-reduced rooted trees are counted by A001679.
Labeled topologically series-reduced rooted trees are counted by A060313.
Labeled lone-child-avoiding rooted trees are counted by A060356.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Matula-Goebel numbers of series-reduced rooted trees are A331489.
Programs
-
Mathematica
lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]]; Table[Length[Select[lrt[Range[n]],Length[#]>2&&FreeQ[#,[]]&]],{n,6}]
-
PARI
a(n) = {if(n<=1, 0, sum(k=1, n, (-1)^(n-k)*k^(k-2)*n*(n-2)!*binomial(n-1,k-1)*(2*k*n - n - k^2)/k!))} \\ Andrew Howroyd, Dec 09 2020
-
PARI
seq(n)={my(w=lambertw(-x/(1+x) + O(x*x^n))); Vec(serlaplace(-x - w - (x/2)*w^2), -n)} \\ Andrew Howroyd, Dec 09 2020
Formula
From Andrew Howroyd, Dec 09 2020: (Start)
a(n) = Sum_{k=1..n} (-1)^(n-k)*k^(k-2)*n*(n-2)!*binomial(n-1,k-1)*(2*k*n - n - k^2)/k! for n > 1.
E.g.f.: -x - LambertW(-x/(1+x)) - (x/2)*LambertW(-x/(1+x))^2.
(End)
Extensions
Terms a(9) and beyond from Andrew Howroyd, Dec 09 2020
Comments