A001678
Number of series-reduced planted trees with n nodes.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 67, 127, 248, 482, 952, 1885, 3765, 7546, 15221, 30802, 62620, 127702, 261335, 536278, 1103600, 2276499, 4706985, 9752585, 20247033, 42110393, 87733197, 183074638, 382599946, 800701320, 1677922740, 3520581954
Offset: 0
--------------- Examples (i=internal,e=external): ---------------------------
|.n=2.|..n=4..|..n=5..|...n=6.............|....n=7..........................|
|.....|.......|.......|.............e...e.|................e.e.e......e...e.|
|.....|.e...e.|.e.e.e.|.e.e.e.e...e...i...|.e.e.e.e.e...e....i....e.e...i...|
|..e..|...i...|...i...|....i........i.....|.....i..........i..........i.....|
|..e..|...e...|...e...|....e........e.....|.....e..........e..........e.....|
-----------------------------------------------------------------------------
G.f. = x^2 + x^4 + x^5 + 2*x^6 + 3*x^7 + 6*x^8 + 10*x^9 + 19*x^10 + ...
From _Joerg Arndt_, Jun 28 2014: (Start)
The a(8) = 6 rooted trees with 7 nodes as described in the comment are:
: level sequence out-degrees (dots for zeros)
: 1: [ 0 1 2 3 3 2 1 ] [ 2 2 2 . . . . ]
: O--o--o--o
: .--o
: .--o
: .--o
:
: 2: [ 0 1 2 2 2 2 1 ] [ 2 4 . . . . . ]
: O--o--o
: .--o
: .--o
: .--o
: .--o
:
: 3: [ 0 1 2 2 2 1 1 ] [ 3 3 . . . . . ]
: O--o--o
: .--o
: .--o
: .--o
: .--o
:
: 4: [ 0 1 2 2 1 2 2 ] [ 2 2 . . 2 . . ]
: O--o--o
: .--o
: .--o--o
: .--o
:
: 5: [ 0 1 2 2 1 1 1 ] [ 4 2 . . . . . ]
: O--o--o
: .--o
: .--o
: .--o
: .--o
:
: 6: [ 0 1 1 1 1 1 1 ] [ 6 . . . . . . ]
: O--o
: .--o
: .--o
: .--o
: .--o
: .--o
:
(End)
From _Gus Wiseman_, Jan 20 2020: (Start)
The a(2) = 1 through a(9) = 10 unlabeled lone-child-avoiding rooted trees with n - 1 nodes (empty n = 3 column shown as dot) are:
o . (oo) (ooo) (oooo) (ooooo) (oooooo) (ooooooo)
(o(oo)) (o(ooo)) (o(oooo)) (o(ooooo))
(oo(oo)) (oo(ooo)) (oo(oooo))
(ooo(oo)) (ooo(ooo))
((oo)(oo)) (oooo(oo))
(o(o(oo))) ((oo)(ooo))
(o(o(ooo)))
(o(oo)(oo))
(o(oo(oo)))
(oo(o(oo)))
(End)
- D. G. Cantor, personal communication.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 525.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 501 terms from Christian G. Bower)
- David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014).
- F. Harary and E. M. Palmer, Probability that a point of a tree is fixed, Math. Proc. Camb. Phil. Soc. 85 (1979) 407-415.
- F. Harary and G. Prins, The number of homeomorphically irreducible trees and other species, Acta Math., 101 (1959), 141-162.
- F. Harary, R. W. Robinson and A. J. Schwenk, Twenty-step algorithm for determining the asymptotic number of trees of various species, J. Austral. Math. Soc., Series A, 20 (1975), 483-503.
- F. Harary, R. W. Robinson and A. J. Schwenk, Corrigenda: Twenty-step algorithm for determining the asymptotic number of trees of various species, J. Austral. Math. Soc., Series A 41 (1986), p. 325.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 404
- Marko Riedel, Generating functions of unordered rooted trees with n nodes where nodes cannot have out-degree 1, classified by the number of leaves, using the Polya Enumeration Theorem and the exponential formula.
- Eric Weisstein's World of Mathematics, Series-reduced tree.
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Unlabeled rooted trees are counted by
A000081.
Topologically series-reduced rooted trees are counted by
A001679.
Labeled lone-child-avoiding rooted trees are counted by
A060356.
Labeled lone-child-avoiding unrooted trees are counted by
A108919.
Matula-Goebel numbers of lone-child-avoiding rooted trees are
A291636.
Singleton-reduced rooted trees are counted by
A330951.
-
with (powseries): with (combstruct): n := 30: sys := {B = Prod(C,Z), S = Set(B,1 <= card), C = Union(Z,S)}: A001678 := 1,0,1,seq(count([S, sys, unlabeled],size=i),i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
# second Maple program:
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1, add(add(
d*a(d+1), d=divisors(j))*b(n-j), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n<2, 0,
`if`(n=2, 1, b(n-2)-a(n-1)))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Jul 02 2014
-
b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*a[d+1], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; a[n_] := a[n] = If[n < 2, 0, If[n == 2, 1, b[n-2] - a[n-1]]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Sep 24 2014, after Alois P. Heinz *)
terms = 38; A[] = 0; Do[A[x] = (x^2/(1+x))*Exp[Sum[A[x^k]/(k*x^k), {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 12 2018 *)
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
Table[If[n<=1,0,Length[Select[urt[n-1],FreeQ[#,{}]&]]],{n,0,10}] (* _Gus Wiseman, Jan 20 2020 *)
-
(a(n) = if( n<4, n==2, T(n-2, n-3))); /* where */ {T(n, k) = if( n<1 || k<1, (n==0) && (k>=0), sum(j=1, k, sum(i=1, n\j, T(n-i*j, min(n-i*j, j-1)) * binomial( a(j+1) + i-1, i))))}; /* Michael Somos, Jun 04 2002 */
-
{a(n) = local(A); if( n<3, n==2, A = x / (1 - x^2) + O(x^n); for(k=3, n-2, A /= (1 - x^k + O(x^n))^polcoeff(A, k)); polcoeff(A, n-1))}; /* Michael Somos, Oct 06 2003 */
A001679
Number of series-reduced rooted trees with n nodes.
Original entry on oeis.org
1, 1, 1, 0, 2, 2, 4, 6, 12, 20, 39, 71, 137, 261, 511, 995, 1974, 3915, 7841, 15749, 31835, 64540, 131453, 268498, 550324, 1130899, 2330381, 4813031, 9963288, 20665781, 42947715, 89410092, 186447559, 389397778, 814447067, 1705775653, 3577169927
Offset: 0
G.f. = 1 + x + x^2 + 2*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 12*x^8 + 20*x^9 + ...
From _Gus Wiseman_, Jan 21 2020: (Start)
The a(1) = 1 through a(8) = 12 unlabeled topologically series-reduced rooted trees with n nodes (empty n = 3 column shown as dot) are:
o (o) . (ooo) (oooo) (ooooo) (oooooo) (ooooooo)
((oo)) ((ooo)) ((oooo)) ((ooooo)) ((oooooo))
(oo(oo)) (oo(ooo)) (oo(oooo))
((o(oo))) (ooo(oo)) (ooo(ooo))
((o(ooo))) (oooo(oo))
((oo(oo))) ((o(oooo)))
((oo(ooo)))
((ooo(oo)))
(o(oo)(oo))
(oo(o(oo)))
(((oo)(oo)))
((o(o(oo))))
(End)
- D. G. Cantor, personal communication.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62, Eq. (3.3.9).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- P. J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. MR0891613 (89a:05009). See p. 155. - _N. J. A. Sloane_, Apr 18 2014
- F. Harary, G. Prins, The number of homeomorphically irreducible trees and other species, Acta Math. 101 (1959) 141-162, W(x,y) equation (9a).
- N. J. A. Sloane, Illustration of initial terms
- Eric Weisstein's World of Mathematics, Series-Reduced Tree.
- Gus Wiseman, Sequences counting series-reduced and lone-child-avoiding trees by number of vertices.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Apart from initial term, same as
A059123.
Cf.
A000055 (trees by nodes),
A000014 (homeomorphically irreducible trees by nodes),
A000669 (homeomorphically irreducible planted trees by leaves),
A000081 (rooted trees by nodes).
Matula-Goebel numbers of these trees are given by
A331489.
Lone-child-avoiding rooted trees are counted by
A001678(n + 1).
-
with(powseries): with(combstruct): n := 30: Order := n+3: sys := {B = Prod(C,Z), S = Set(B,1 <= card), C = Union(Z,S)}:
G001678 := (convert(gfseries(sys,unlabeled,x)[S(x)], polynom)) * x^2: G0temp := G001678 + x^2:
G001679 := G0temp / x + G0temp - (G0temp^2+eval(G0temp,x=x^2))/(2*x): A001679 := 0,seq(coeff(G001679,x^i),i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
# adapted for Maple 16 or higher version by Vaclav Kotesovec, Jun 26 2014
-
terms = 37; (* F = G001678 *) F[] = 0; Do[F[x] = (x^2/(1 + x))*Exp[Sum[ F[x^k]/(k*x^k), {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms + 1}];
G[x_] = 1 + ((1 + x)/x)*F[x] - (F[x]^2 + F[x^2])/(2*x) + O[x]^terms;
CoefficientList[G[x], x] (* Jean-François Alcover, Jan 12 2018 *)
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
Table[Length[Select[urt[n],Length[#]!=2&&FreeQ[Z@@#,{}]&]],{n,15}] (* _Gus Wiseman, Jan 21 2020 *)
-
{a(n) = local(A); if( n<3, n>0, A = x / (1 - x^2) + x * O(x^n); for(k=3, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff( (1 + x)*A - x*(A^2 + subst(A, x, x^2)) / 2, n))};
A060313
Number of homeomorphically irreducible rooted trees (also known as series-reduced rooted trees, or rooted trees without nodes of degree 2) on n labeled nodes.
Original entry on oeis.org
1, 2, 0, 16, 25, 576, 2989, 51584, 512649, 8927200, 130956001, 2533847328, 48008533885, 1059817074512, 24196291364925, 609350187214336, 16135860325700881, 459434230368302016, 13788624945433889593, 439102289933675933600, 14705223056221892676741
Offset: 1
From _Gus Wiseman_, Jan 22 2020: (Start)
The a(1) = 1 through a(4) = 16 trees (in the format root[branches], empty column shown as dot) are:
1 1[2] . 1[2,3,4]
2[1] 1[2[3,4]]
1[3[2,4]]
1[4[2,3]]
2[1,3,4]
2[1[3,4]]
2[3[1,4]]
2[4[1,3]]
3[1,2,4]
3[1[2,4]]
3[2[1,4]]
3[4[1,2]]
4[1,2,3]
4[1[2,3]]
4[2[1,3]]
4[3[1,2]]
(End)
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
The unlabeled unrooted version is
A000014.
The lone-child-avoiding version is
A060356.
-
[1] cat [n*Factorial(n-2)*(&+[(-1)^k*Binomial(n,k)*(n-k)^(n-k-2)/Factorial(n-k-2): k in [0..n-2]]): n in [2..20]]; // G. C. Greubel, Mar 07 2020
-
seq( `if`(n=1, 1, n*(n-2)!*add((-1)^k*binomial(n, k)*(n-k)^(n-k-2)/(n-k-2)!, k=0..n-2)), n=1..20); # G. C. Greubel, Mar 07 2020
-
f[n_] := If[n < 2, 1, n(n - 2)!Sum[(-1)^k*Binomial[n, k](n - k)^(n - 2 - k)/(n - 2 - k)!, {k, 0, n - 2}]]; Table[ f[n], {n, 19}] (* Robert G. Wilson v, Feb 12 2005 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]];
Table[Length[Select[lrt[Range[n]],Length[#]!=2&&FreeQ[Z@@#,Integer[]]&]],{n,6}] (* Gus Wiseman, Jan 22 2020 *)
-
[1]+[n*factorial(n-2)*sum((-1)^k*binomial(n,k)*(n-k)^(n-k-2)/factorial( n-k-2) for k in (0..n-2)) for n in (2..20)] # G. C. Greubel, Mar 07 2020
A254382
Number of rooted labeled trees on n nodes such that every nonroot node is the child of a branching node or of the root.
Original entry on oeis.org
0, 1, 2, 3, 16, 85, 696, 6349, 72080, 918873, 13484080, 219335281, 3962458248, 78203547877, 1680235050872, 38958029188485, 970681471597216, 25847378934429361, 732794687650764000, 22032916968153975769, 700360446794528578520
Offset: 0
a(5) = 85:
...0................0...............0-o...
...|.............../ \............ /|\....
...o..............o o...........o o o...
../|\............/ \ ...................
.o o o..........o o ..................
These trees have 20 + 60 + 5 = 85 labelings.
From _Gus Wiseman_, Jan 22 2020: (Start)
The a(1) = 1 through a(4) = 16 trees (in the format root[branches]) are:
1 1[2] 1[2,3] 1[2,3,4]
2[1] 2[1,3] 1[2[3,4]]
3[1,2] 1[3[2,4]]
1[4[2,3]]
2[1,3,4]
2[1[3,4]]
2[3[1,4]]
2[4[1,3]]
3[1,2,4]
3[1[2,4]]
3[2[1,4]]
3[4[1,2]]
4[1,2,3]
4[1[2,3]]
4[2[1,3]]
4[3[1,2]]
(End)
Lone-child-avoiding rooted trees are
A001678(n + 1).
Labeled topologically series-reduced rooted trees are
A060313.
Labeled lone-child-avoiding unrooted trees are
A108919.
-
nn = 20; b = 1 + Sum[nn = n; n! Coefficient[Series[(Exp[x] - x)^n, {x, 0, nn}], x^n]*x^n/n!, {n,1, nn}]; c = Sum[a[n] x^n/n!, {n, 0, nn}]; sol = SolveAlways[b == Series[1/(1 - (c - x)), {x, 0, nn}], x]; Flatten[Table[a[n], {n, 0, nn}] /. sol]
nn = 30; CoefficientList[Series[1+x-1/Sum[SeriesCoefficient[(E^x-x)^n,{x,0,n}]*x^n,{n,0,nn}],{x,0,nn}],x] * Range[0,nn]! (* Vaclav Kotesovec, Jan 30 2015 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]];
Table[Length[Select[lrt[Range[n]],FreeQ[Z@@#,Integer[]]&]],{n,6}] (* Gus Wiseman, Jan 22 2020 *)
A331233
Number of unlabeled rooted trees with n vertices and more than two branches of the root.
Original entry on oeis.org
0, 0, 0, 1, 2, 5, 12, 30, 75, 194, 501, 1317, 3485, 9302, 24976, 67500, 183290, 500094, 1369939, 3766831, 10391722, 28756022, 79794407, 221987348, 619019808, 1729924110, 4844242273, 13590663071, 38195831829, 107523305566, 303148601795, 855922155734, 2419923253795
Offset: 1
The a(4) = 1 through a(7) = 12 rooted trees:
(ooo) (oooo) (ooooo) (oooooo)
(oo(o)) (oo(oo)) (oo(ooo))
(ooo(o)) (ooo(oo))
(o(o)(o)) (oooo(o))
(oo((o))) (o(o)(oo))
(oo((oo)))
(oo(o)(o))
(oo(o(o)))
(ooo((o)))
((o)(o)(o))
(o(o)((o)))
(oo(((o))))
The Matula-Goebel numbers of these trees are given by
A033942.
The series-reduced case is
A331488.
The lone-child-avoiding case is (also)
A331488.
Unlabeled rooted trees are counted by
A000081.
-
g:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
`if`(i<1, 0, add(binomial(g(i-1$2, 0)+j-1, j)*
g(n-i*j, i-1, max(0, t-j)), j=0..n/i)))
end:
a:= n-> g(n-1$2, 3):
seq(a(n), n=1..40); # Alois P. Heinz, Jan 22 2020
-
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
Table[Length[Select[urt[n],Length[#]>2&]],{n,10}]
(* Second program: *)
g[n_, i_, t_] := g[n, i, t] = If[n == 0, If[t == 0, 1, 0],
If[i < 1, 0, Sum[Binomial[g[i - 1, i - 1, 0] + j - 1, j]*
g[n - i*j, i - 1, Max[0, t - j]], {j, 0, n/i}]]];
a[n_] := g[n-1, n-1, 3];
Array[a, 40] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
-
\\ TreeGf gives gf of A000081.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={my(g=TreeGf(n)); Vec(g - x*(1 + g + (g^2 + subst(g, x, x^2))/2), -n)} \\ Andrew Howroyd, Jan 22 2020
A331577
Number of labeled rooted trees with n vertices and more than two branches of the root.
Original entry on oeis.org
0, 0, 0, 4, 65, 1026, 17857, 349224, 7657281, 186895270, 5037424601, 148805552556, 4784793219505, 166458635341194, 6231891513395745, 249886992888096976, 10686839817678846209, 485632267141865950926, 23370062118676064101801, 1187393725239246382405140
Offset: 1
Non-isomorphic representatives of the a(6) = 1026 trees (in the format root[branches]) are:
1[2,3,4[5[6]]]
1[2,3[4],5[6]]
1[2,3,4[5,6]]
1[2,3,4,5[6]]
1[2,3,4,5,6]
The series-reduced version is
A331578.
Labeled rooted trees are counted by
A000169.
-
lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]];
Table[Length[Select[lrt[Range[n]],Length[#]>2&]],{n,6}]
-
seq(n)={my(f=serreverse(x*exp(O(x^n) -x ))); Vec(serlaplace(f - x*(1 + f + f^2/2)), -n)} \\ Andrew Howroyd, Jan 23 2020
Showing 1-6 of 6 results.
Comments